

ThermoFisher SCIENTIFIC

Organic Elemental Analyzer for Food Analysis

Chris BRODIE, PhD OEA-IRMS (Global Support, Bremen)

GOH Lin-Tang, PhD Mass Spectrometry (Senior Manager, SEA)

The world leader in serving science

- Cereals, beans and seeds
- Milk and dairy products
- Meat and meat products
- Animal feed
- Beverages
- Beer (wort, malt and barley)
- Food supplements

FLASH 2000 N/Protein Users

KERRY

INGREDIENTS

ALcontrol Laboratories

Animal Feed

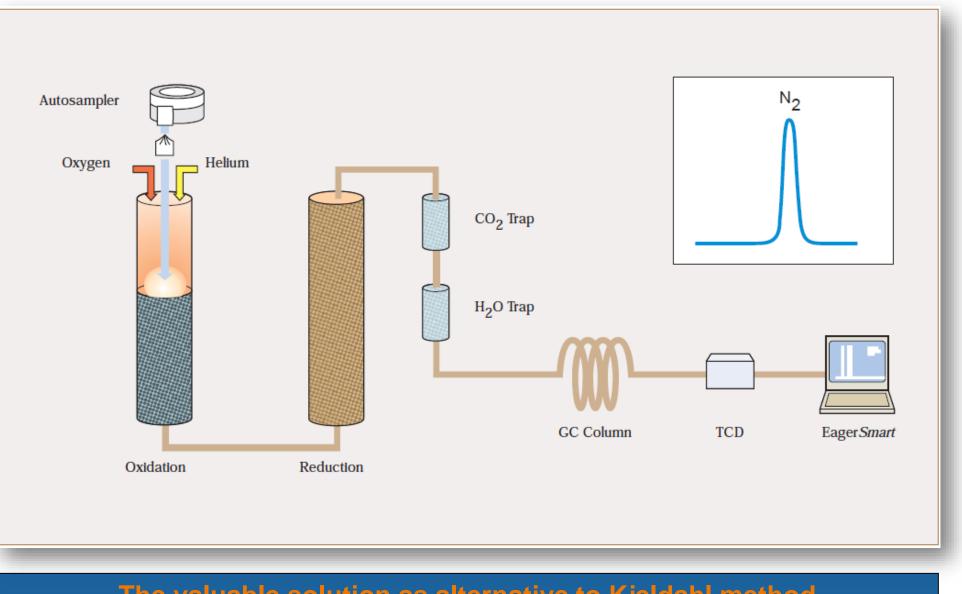
 Cargill, international colossus leader in animal feed field, has chosen Thermo Scientific FLASH instruments: more than 15 instruments for N/Protein determination.
 The Flash N/Protein becomes therefore, for Thermo Scientific, an international reference in order to evaluate the protein content.

FlashSmart Analyzer – Introduction

Organic Elemental Analysis (OEA): Determination of Carbon, Hydrogen, Nitrogen, Sulfur and Oxygen in <u>every</u> type of materials (organic and inorganic).

Quantification of the sample	Weighing
Quantitative oxidation of the sample	Combustion
Reduction of combustion gases	Reduction
Separation of the oxidation gases	Chromatography
Generation of signal	Detection

Micro Elemental Analysis: Simultaneous analysis of CHNS/ with small sample weights (low mg)

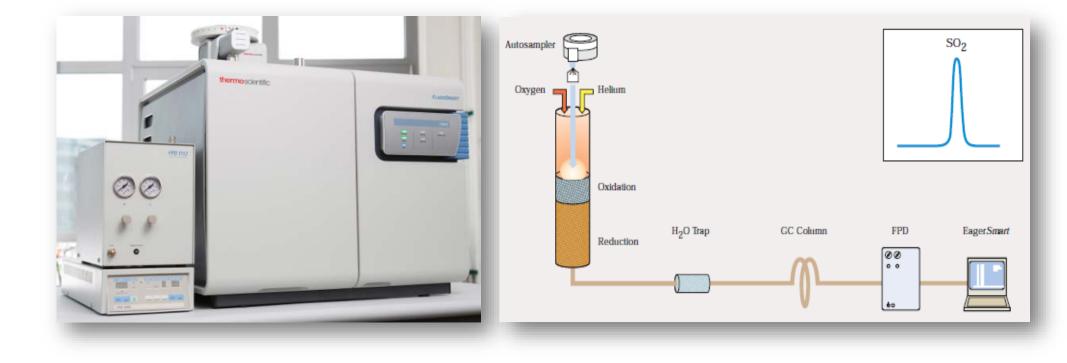

Macro Elemental Analysis: Analysis of NC and N with large sample weights (high mg)

> Fully Automatic Technology Based on Dumas Method

FLASH 2000 Analyzer – Nitrogen / Protein Configuration

The valuable solution as alternative to Kjeldahl method

Flexibility of the FlashSmart Analyzer


- Conversion from N/Protein to NC configuration
- Conversion from N/Protein to CHNS / CHN / NCS configuration
- Conversion from N/Protein to Oxygen configuration
- Conversion form N/Protein to Sulfur determination by FPD detector

- Analysis of solids, liquids and viscous samples
- MAS Plus and AI/AS 1310 Liquid Autosampler installed on the same system

FlashSmart+ FPD Detector: lower S det. 5 – 10 ppm

FPD : Flame Photometric Detector

OEA / FPD key features

- Total Sulfur determination
- For every type of materials
- Wide application range
- High and Low Conc. of S in the same instrument
- Constant FPD conditions with different samples
- OEA / FPD can be coupled to FlashSmart and previous OEA models
- Eager Smart Data Handling Software
- Sulfur Reference Materials included in the OEA / FPD system

Sulfur analysis by FPD detector

Sample	S %	Av. S%	RDS %
	0.3565		
	0.3648		
Chocolate	0.3551	0.3585	1.14
	0.3551		
	0.3589		
	0.0065		
	0.0063		
Maize Starch	0.0065	0.0065	2.28
	0.0064		
	0.0067		
	0.0549		
	0.0524		
Dried fruit	0.0548	0.0538	2.39
	0.0547		
	0.0525		
	0.1535		
Diet food	0.1535	0.1520	1.67
	0.1491		
	0.3449		
Spiked diet	0.3362	0.3409	1.29
	0.3417		

N / Protein determination of Corn Gluten and Soya

Sample	N %	RSD %	Protein %	RSD %
	10.0489		62.8055	
1	10.0461	0.0274	62.7881	0.0271
	10.0516		62.8222	
	9.4731		59.2069	
2	9.4775	0.0235	59.2345	0.0235
	9.4759		59.2241	
	10.4201		65.1256	
3	10.4356	0.0925	65.2225	0.0925
	10.4378		65.2362	
	10.7510		67.1940	
4	10.7734	0.1170	67.3337	0.1169
	10.7722		67.3265	
	10.3815		64.8846	
5	10.3800	0.0159	64.8752	0.0161
	10.3782		64.8637	

Sample			N %					Protein %		
Soya 50%	7.05	7.06	7.00	6.98	7.04	44.07	48.11	43.74	43.66	44.00
Soya 55%	7.86	7.81	7.83	7.78	7.84	49.14	48.80	48.93	48.64	48.99
Soya CR	5.51	5.61	5.58			34.47	35.07	34.86		
Soya M	5.92	5.85	5.88			36.98	36.57	36.76		

N /Protein determination of Cured Meats

Sample	N %	Protein %	RSD %
	2.744	17.153	
	2.725	17.032	
	2.710	16.939	
	2.755	17.224	
Bacon	2.734	17.090	1.867
Dacon	2.834	17.716	
	2.664	16.654	
	2.752	17.199	
	2.814	17.590	
	2.772	17.325	
	4.649	29.057	
	4.512	28.201	
	4.808	30.051	
	4.550	28.439	
Salami	4.530	28.315	2.206
Salami	4.682	29.265	
	4.708	29.424	
	4.677	29.233	
	4.771	29.821	
	4.569	28.556	

Sample	No. of runs	N %	RSD %
Beef sausage	34	2.9972	1.6697
Pepperone salame	36	3.2163	1.7932
Turkey salame	27	5.0592	1.6987
Genoa salame	40	3.3069	1.4353

W (mg)	N %	Prot. %
214.8	2.393	14.956
221.0	2.415	15.092
271.6	2.442	15.263
297.6	2.404	15.026
175.0	2.441	15.259
209.5	2.401	15.007
247.0	2.450	15.310
205.3	2.427	15.166
230.3	2.444	15.274
258.0	2.418	15.115

Statistical Data:

Number of Analyses: 10

Average N%: 2.423 Std. Dev.: 0.020 RSD %: 0.834

Average Protein %: 15.147 Std. Dev.: 0.126 RSD %: 0.834

N / Protein determination in Cheese

Sample	N %	Protein %
"Caprine-"	2.283	14.564
Caprine-	2.298	14.662
"Massarpono"	0.642	4.099
"Mascarpone"	0.629	4.013
	4.335	27.657
	4.394	28.031
	4.364	27.843
	4.293	27.391
Seasoned "Provolone"	4.350	27.756
Seasoned Provolone	4.366	27.852
-	4.358	27.806
	4.382	27.960
	4.324	27.589
	4.359	27.811
	5.190	33.115
	5.164	32.944
	5.172	32.999
	5.181	33.054
"Parmesan"	5.261	33.567
Pannesan	5.267	33.604
	5.229	33.360
	5.260	33.558
	5.170	32.984
	5.230	33.370

Sample	N %	Protein %	RSD %
	1.018	6.365	
White chocolate	1.019	6.370	0.190
	1.016	6.347	
	0.969	6.057	
Black chocolate	0.969	6.057	0.114
	0.971	6.069	
Plain chocolate	1.530	9.540	
Fiam chocolate	1.512	9.442	0.745

N / Protein determination of Starch

Sample	N %	Protein %	RSD %
	0.0546	0.3409	
1	0.0551	0.3445	0.5256
	0.0548	0.3426	
	0.0371	0.2322	
2	0.0366	0.2285	0.8299
	0.0370	0.2312	
	0.0129	0.0804	
3	0.0126	0.0789	2.2977
	0.0123	0.0768	
	0.0476	0.2975	
4	0.0474	0.2962	0.2530
	0.0474	0.2962	

N / Protein determination in Brewery Industry

MALT

BEER	
------	--

WORT

N %	Protein %			
1.588	9.925			
1.580	9.875			
1.560	9.750			
1.575	9.844			
1.553	9.706			
1.560	9.750			
1.555	9.719			
1.530	9.562			
1.547	9.669			
1.574	9.837			
1.563	9.769			
1.537	9.606			
1.576	9.850			
1.562	9.762			
1.549	9.681			
1.565	9.781			
1.562	9.762			
1.558	9.737			
1.546	9.662			
1.575	9.844			
<i>Statistical Data:</i> Number of analysis: 20 Av. N %: 1.561 Av. Protein %: 9.754				
RSD %: 0.941				

	Day 1 (ppm N)	Day 2 (ppm N)					
	691	677					
	679	691					
	701	698					
	685	698					
	689	706					
	688	696					
	692	678					
	693	706					
	699	698					
	689	675					
	708	691					
	724	710					
	731	722					
	701	709					
	708	699					
	705	697					
	724	685					
	693	698					
	699	692					
	704	684					
_							
	<i>Statistical Data</i> Number of analysis: 20 Day 1: Av. N: 700 ppm						
RSD %: 1.961							
Day 2: Av. N: 696							
	RSD %: 1						
L							

litrogen %
0.1232
0.1229
0.1243
0.1235
0.1248
0.1259
0.1247
0.1253
0.1263
0.1245
0.1215
0.1253
0.1222
0.1234
0.1256
0.1246
0.1249

Statistical Data: Number of analysis: 17 Average N%: 0.1243 RSD %: 1.0701

Sample Name	Nitrogen %	Protein %	RSD %
	0.3674	2.2964	0.3459
1	0.3658	2.2864	
	0.3649	2.2804	
	0.0534	0.3340	1.0884
2	0.0536	0.3347	
	0.0545	0.3407	

Sample	N %	Protein %	RSD %
	0.6135	3.8346	
1	0.6134	3.8339	0.384
	0.6176	3.8598	
2	0.8181	5.1132	
	0.8207	5.1293	
	0.8186	5.1161	0.144
	0.8190	5.1188	
	0.8206	5.1287	

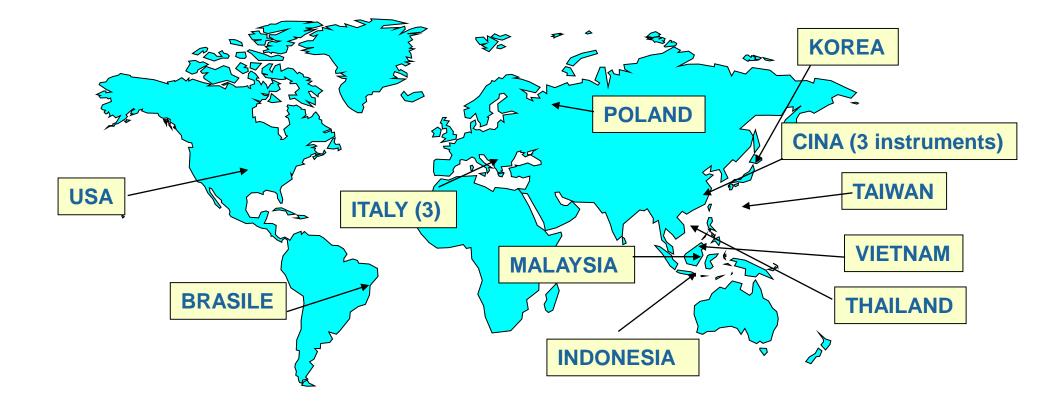
Food Supplements – NC Determination

Sample	N %	RSD %	C %	RSD %
1	5.7388	0.0713	14.5980	0.0845
	5.7468		14.6226	
	5.7443		14.6122	
2	11.3650	0.1232	45.6246	0.3854
	11.3911		45.3035	
	11.3692		45.3432	
3	5.8447	0.2686	17.1273	0.1376
	5.8313		17.1149	
	5.8626		17.1605	
4	3.6302	0.3101	37.0935	0.2010
	3.6131		36.9753	
	3.6343		36.9562	

CHNS determination of Food Related Products

Sample	N %	RSD %	C %	RSD %	H %	RSD %	S %	RSD %
	16.249		43.023		6.902		0.394	
Fish gelatine	16.212	0.185	43.099	0.089	6.608	2.632	0.408	2.004
	16.189		43.051		6.586		0.408	
	15.796		44.615		6.623		0.531	
Bovine gelatine	15.835	0.148	44.647	0.037	6.658	0.309	0.536	0.601
	15.838		44.624		6.622		0.537	
	16.088		44.460		6.631		0.531	
Porcine gelatine	16.016	0.226	44.397	0.096	6.659	0.585	0.536	0.970
	16.043		44.379		6.582		0.537	
	2.530		31.008		5.396		0.399	
	2.516		30.850		5.456		0.396	
Starch	2.537	0.329	31.000	0.204	5.415	1.004	0.391	0.902
	2.520		30.956		5.373		0.392	
	2.528		30.967		5.310		0.398	
	13.168		52.179		6.665			
Food supplement A	13.160	0.137	52.084	0.104	6.626	0.311		
	13.194		52.178		6.626			
	0.071		8.0197		2.207			
Food supplement B	0.071	1.109	8.0251	0.036	2.199	0.254		
	0.073		8.0241		2.209			
	0.330		40.615		6.274		0.366	
Food supplement C	0.332	0.533	40.396	0.323	6.331	0.488	0.368	1.581
	0.329		40.630		6.323		0.357	

N / Protein determination of Dietary Fiber (celite)


Sample 1	N %	RSD %	Protein %	RSD %
	0.123		0.771	
1	0.125	0.9337	0.782	0.8198
	0.123		0.771	
	0.175		1.094	
2	0.174	0.3305	1.089	0.2423
	0.175		1.093	
	0.358		2.240	
3	0.352	0.9786	2.200	1.0061
	0.352		2.203	
	0.281		1.755	
4	0.285	0.9316	1.782	1.0328
	0.286		1.790	

N / Protein determination in Animal Feed

Cargill produces and distributes crop nutrients and feed ingredients to farmers, <u>beef</u>, <u>dairy</u>, <u>pork</u> and <u>poultry</u> producers and animal feeders. They originate and process grain, oilseeds and other agricultural commodities for distribution to makers of food, feed and other products.

Cargill also collaborates with food manufacturers, food service, distributors and retailers with a focus on customer and consumer benefits. Cargill offers insights in food and beverage ingredients, meat and poultry products, and food applications that help customers succeed.

Sample	N %	Protein%
Petfood	4.65	29.07
	4.61	28.81
	4.70	29.40
	4.69	29.32
	4.69	29.34
Av. %	4.67	29.19
RSD %	0.81	0.84
Fishfood	7.89	49.32
	7.94	49.64
	8.02	50.11
	7.84	49.01
	8.09	50.57
Av. %	7.96	49.73
RSD %	1.24	1.24

N/Protein determination in fish meals

Day	Day 1		Day 2		Day 3	
Data	N %	Prot %	N %	Prot %	N %	Prot %
	11.20 11.21 11.21 11.19 11.17 11.15 11.13 11.13 11.17 11.14 11.21	69.99 70.07 70.04 69.95 69.84 69.71 69.57 69.84 69.59 70.09	11.19 11.19 11.20 11.21 11.20 11.14 11.25 11.19 11.19	69.92 69.91 69.92 70.02 70.07 70.00 69.60 70.33 69.93	11.20 11.18 11.19	69.99 69.90 69.97
Average %	11.18	69.87	11.19	69.96	11.19	69.95
RSD %	0.27	0.27	0.26	0.26	0.07	0.07

N / Protein determination in Animal Feed

Sample	N %	RSD %
Fish Meal	10.29	1.221
Gluten Meal	10.52	0.854
Maize	7.95	0.784
Starch	0.046	2.031
Chicken Feed	3.01	1.546
Straw	0.45	0.623
Green Grass	3.28	0.954
Meat and Bone Mix	8.20	1.422

Samples analyzed in triplicate

Flash Smart vs. Kjeldahl Method – Technical Comparison

Information	Kjeldahl Method	FLASH 2000 Analyzer (Dumas Meth	od)		
Range of sample weight	500 – 1000 mg (2000 mg)	100 - 1000 mg (solid, viscous and liquid			
Procedure steps	Sample preparation- weighing-digestion-distillation-titration- calculations-results.	Sample preparation-weighing-analysis-r			
Timing					
Warming up	10 - 45 minutes (once a day)	30 minutes (from stand-by condition). Warming up is not needed using the Wa automatic function.	ke-up		
Preparation of the sample (Homogenization)	5 – 20 minutes	5 - 20 minutes This can be done when the system is analyzing samples (not possible with Kje	ldhal)		
Preparation of reagents	Manual preparation: 10 - 20 minutes	Filling of two reactors and two traps: 20 minutes	Safety	High cost	Low cost
Digestion	2 – 6 hours	No		Concentrated acids at boiling temperature Toxic catalyst and chemicals	No furnes, acids and toxic reagents No atmospheric pollution Special stainless steel tubes Consumables: EDTA, CuO-Pt on alumina, copper, soda lime, molecular sieve, silicag quartz wool The separation column is not a consumat
Cool Down	20 mins – 2 hours	No]	Glass tubes	
Nitrogen analysis time	10 minutes	4 – 6 minutes	1	Consumables: H,SO, 96-98%, NaOH 40 %,	
Other steps	5 – 10 minutes (distillation/tritation, washing of distillation system)	No	-	H_BO_ 3%, HCI Ô.1N, CuSO_5H_O, ZnSO_ KSO4, H_SO_ 0.1N, NaOH 0.1N, Acetanilide 10N NaOH in a 25 litre vessel	
Total time for one N determination (excluding warming up)	3 – 10 hours	4 - 6 minutes/sample (samples can be weighed during a sequence of analyses)	Waste disposal	Alkali waste High cost Large amount Note: destruction of 1 batch of 20 tubes takes almost 3 hours	Ashes in the crucible (the amount depends of the sample nature). Exhausted catalyst, copper and so (CO ₂ adsorber)
			Equipment		
			Lifetime of instrument	Moderate lifetime due to acidic environment Frequent servicing every 3-4 months	Long lifetime of instrument
			Leakage Problems	Often rubber tubing breaks, leading to leaking	None. Automatic Leak Test (Eager software function) is performed af maintenance
			Damage to safety cabinet	Slight damage due to accident spillage of corrosive chemicals	No
			Laboratory requirements Anti acid table Need of chimney Gases	Cluttered workplace Yes Yes No	Clean workplace No No Yes, helium and oxygen, optional a alternative to helium)
			User knowledge	High Basic laboratory and chemistry knowledge. Knowledge of tritrimetric methods Lab technician, analytical training needed Labor intensive	Low Basic laboratory and chemistry kn Basic knowledge in gas chromato Lab technician, analytical training instrument operation and mainten training needed.

Flash*Smart* vs. Kjeldahl Method

Technical Comparison

Information	Kjeldahl Method	FLASH 2000 Analyzer (Dumas Method)
Maintenance	High	Low
	Regular maintenance of seals, reagent pumps, glass parts of the system. Distillated system, washing of tubes and filters every 3 months. Frequent replacement of rubber tubing and modules (hot block digestion). Manual cleaning of glass tubes Daily care of instrument	Lifetime: Catalyst ≥1000 runs, copper ≥500 runs, traps about 120 runs. Ash removal: 80 – 120 runs. Maintenance is scheduled in the Eager Xperience software, automatic signal when needed. Large number of runs with same reactors Easy to maintain: special stainless reactors and crucible for faster ash removal.
Capacity (number of analyses in continuous cycle)	6 – 20 per day The capacity is limited by the digestion time	1 drum for 32 samples With 3 extra drums, capacity is up to 125 samples
Automation and unattended analysis (number of analyses)	Not automated There is no automation in digestion/distillation No automatic sample loading	Automatic MAS 200R autosampler Truly unattended operation Ability to add extra samples during the analys
Quantitative recovery of N	Matrix problems Incomplete N recovery from some samples even after hours of digestion	Total conversion of organic and inorganic material to elemental gases. Results unbaised by sample matrix due to th flash combustion method.
Manual and/or automatic protein calculation	Manual (Excel file) In house spreadsheet for keying in data and final protein calculation	Dedicated Eager Xperience Software, automatically calculates the protein content. It is possible to use different protein factors according to sample nature.
Software	No dedicated software	Eager Xperience dedicated software with th following features: Stand-by, Wake-up and Auto-Start automat functions Maintenance program OxyTune option automatically calculates the amount of oxygen necessary for complete combustion of the sample Ability to insert the humidity of the sample fi proper protein calculation Automatic transfer of the weight from the balance Standard and personal reports Automatic Leak Test CFR 21 part 11 compliance
Validation	-	Ability to validate/qualify the FLASH 2000 0
Modularity	No	FLASH 2000 N/Protein analyzer can be eas modified to NC, CHN, CHNS, NCS, 0xygen determination without changing hardware ar software The FLASH 2000 0EA can be upgraded wit a dedicated liquid autosampler Al/AS 1310. The Eager Xperience software is able to control the liquid autosampler without any updated version and without extra cost.

Method:

- Weigh approx. 2 g of sample
- Add catalyst: 7 g K_2SO_4 , 0.25 g HgO
- Add 15 ml H_2SO_4
- Add 3 ml H_2O_2
- Digestion at 410 ° C for 45 min
- Cool for 10 min
- Add NaOH/ Na₂SO₃ solution
- Steam distillation
- Collect in H₃BO₃
- Titrate with HCI

Kjeldahl user's nightmares !!

SAFETY

Concentrated acids at boiling temp Toxic catalyst and chemicals

WASTE DISPOSAL

TIME CONSUMPTION

RELIABILITY OF RESULTS

FlashSmart vs. Kjeldahl Method – Analytical Comparison

Analysis of BIPEA (Bureau InterProfessionnel d'Etrudes Analytiques, France) Reference Material.

The first table shows the average and range indicated in the relative Reference Materials Certificates.

The second table shows the N/ Protein data of the BIPEA samples analyzed in duplicate by the Flash *Smart* using a sample weight of about 200 – 300 mg.

Sample	Moisture	Fat	Carbohydrate	Kjeldahl Protein		Combustion Protein	
	%	%	%	Av.%	Tolerance	Av.%	Tolerance
Bipea - Feed for Sow	9.8	2.8	48.7	16.0	0.6	16.2	0.6
Bipea - Dehydrated Alfalfa	7.7		29.3	14.8	0.6	15.1	0.6
Bipea - Hyperproteic Powder		0.8		85.4	3.4	86.4	3.5

BIPEA sample information available

Reproducibility of Nitrogen / Protein determination in BIPEA Reference Materials

Sample	Bipea - Feed for Sow		Bipea - Dehydrated Alfalfa		Bipea - Hyperproteic Powder	
%	N %	Protein %	N %	Protein %	N %	Protein %
	2.60	16.25	2.45	15.31	13.65	85.31
	2.58	16.12	2.44	15.25	13.63	85.19
Average %	2.59	16.185	2.445	15.28	13.64	85.25
RSD %	0.546	0.568	0.289	0.278	0.104	0.099

Nitrogen / Protein determination in Milk Reference Material

Reference Material from Cetre d'Étude et de Controle des Analyses en Industrie Laitiére, France

Kjeldahl Method - Mean from the results of 5 laboratories: 0.5284 % N

Flash Smart data

N %	Average N %	RSD %	Protein %	Average Protein %	RSD %		
0.5312			3.3891				
0.5286	*		3.3722				
0.5321	*		3.3948				
0.5339	*		3.4065				
0.5306	0.5298 0.5604	0.5004	0.5004	3.3854	3.3800	0.5605	
0.5251		3.3504	3.3000	0.0000			
0.5335			3.4035				
0.5264					3.3584		
0.5288			3.3735				
0.5276			3.3659				

Nitrogen / Protein determination in Fish Meal

Fish meal sample	FlashSmart - Protein %	Kjeldahl Method - Protein %	Difference
1	63.7	63.5	0.2
2	65.4	65.4	0.0
3	65.5	65.2	0.3
4	69.7	70.2	-0.5
5	69.8	70.0	-0.2
6	71.6	72.0	-0.4
7	69.7	69.5	0.2
8	67.9	68.5	-0.6
9	69.6	69.4	0.2
10	70.4	70.0	0.4
11	69.9	69.6	0.3
12	67.5	67.3	0.2
13	67.8	67.5	0.3
14	65.3	64.8	0.5
15	69.7	69.7	0.0
16	65.4	65.3	0.1
17	70.5	70.0	0.5
18	70.7	70.2	0.5
19	71.9	71.9	0.0
20	69.1	69.5	-0.4
21	69.9	70.0	-0.1
22	65.4	65.6	-0.2
23	67.3	67.6	-0.2
24	65.2	64.8	0.4

Nitrogen / Protein determination in Brewery industry

Sample Name	Kjeldahl Method		Flash <i>Smart</i>			
	N %	Protein %	N %	Protein %	RSD %	
Malt 1	1.66	10.38	1.67	10.44	0.25	
Malt 2	1.75	10.94	1.78	11.12	0.67	
Malt 3	1.54	9.62	1.53	9.56	0.51	
Malt 4	1.43	8.94	1.40	8.75	0.66	
Barley 1	1.39	8.69	1.42	8.88	0.46	
Barley 2	1.35	8.44	1.34	8.38	0.87	
Barley 3	1.56	9.75	1.57	9.81	0.56	
Barley 4	1.47	9.19	1.45	9.06	1.01	

Samula Namo	Kjeldahl Method	Flash	Smart
Sample Name	N %	N %	RSD %
Beer 1	0.0587 - 0.0592	0.0594	1.133
Beer 2	0.0641 - 0.0644	0.0647	1.023
Beer 3	0.0650 - 0.0666	0.0659	0.956
Beer 4	0.0614 - 0.0619	0.0618	1.011
Beer 5	0.0628 - 0.0630	0.0630	0.892
Beer 6	0.0640 - 0.0645	0.0637	0.912
Wort 1	0.0885 - 0.0890	0.0892	1.232
Wort 2	0.1140 - 0.1150	0.1170	0.874
Wort 3	0.1300 - 0.1310	0.1320	0.912
Wort 4	0.0995 - 0.0993	0.0993	1.112
Wort 5	0.0825 - 0.0827	0.0821	1.098
Wort 6	0.0889 - 0.0893	0.0899	1.210

Flash Smart vs. Kjeldahl Method – Analytical Comparison

Sample	Flash	Smart	Kjeldahl Method		
	N %	Protein %	N %	Protein %	
Soya	6.27	39.20	6.27	39.18	
Lentils	4.35	27.17	4.35	27.19	
Rice	1.13	7.08	1.12	7.00	
Wheat	1.75	10.91	1.74	10.89	
Beans	3.74	23.35	3.74	23.38	
UHT milk 1	0.53	3.38	0.53	3.37	
UHT milk 2	0.50	3.19	0.49	3.17	
Crude milk 1	0.57	3.65	0.57	3.66	
Crude milk 2	0.47	3.03	0.47	3.02	
Crude milk 3	0.41	2.65	0.42	2.66	
Pasteurized milk 1	0.50	3.21	0.50	3.19	
Pasteurized milk 2	0.46	2.96	0.47	2.99	
Milk powder 1	4.32	27.56	4.30	27.43	
Milk powder 2	4.18	26.64	4.19	26.73	
Milk powder 3	5.46	34.83	5.43	34.64	
Yoghurt	0.080	0.51	0.078	0.50	
Mascarpone cheese	0.635	4.05	0.638	4.07	
Grapes	0.52	3.25	0.51	3.19	
Bacon (low fat)	2.73	17.06	2.70	16.86	
Meat loaf	2.01	12.57	1.97	12.31	
Ham	2.56	16.00	2.54	15.87	
Biscuits 1	1.40	8.80	1.39	8.72	
Biscuits 2	1.36	8.51	1.34	8.37	
Flour	1.34	8.40	1.32	8.24	

AACC (American Association of Cereal Chemists)

Crude Protein in Cereals 46-30, 1999

AOAC (Association of Official Analytical Chemists)

Protein (crude) in Animal Feed, official Method 990.03, 4.2.08 Crude Protein in Meat and Meat Products including Pet Foods, Official Method 992.15, 39.1.16 Crude Protein in Cereal, Grains and Oilseeds, Official Method 992.23, 32.2.02 Nitrogen (Total) in Fertilizers, Official Method 993.13, 2.4.02

AOCS (American Oil Chemists Society)

Combustion Method for determination of Crude Protein Official Method Ba 4e-93 (revised 1995)

ASBC (American Society of Brewing Chemists)

Nitrogen determination in Barley, official Method, 1996

ASBC (American Society of Brewing Chemists)

Total Nitrogen in Wort and Beer by combustion method. Report of subcommittee, 1994

IDF (International Dairy Federation)

Nitrogen determination in Dairy Products by combustion method, 14891 – FIL 185

IFFO (International Fishmeal and Fish Oil organization Ltd.)

Nitrogen determination in Fish Meal by combustion method

ISO (International Organization for Standarization)

Food Products – Determination of the Total Nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Part 1: Oil seeds and Animal Feeding Stuffs, 16634-1, 2008

Office International de la Vigne et du Vin

Quantification of Total Nitrogen by Dumas method (Musts and Wines)

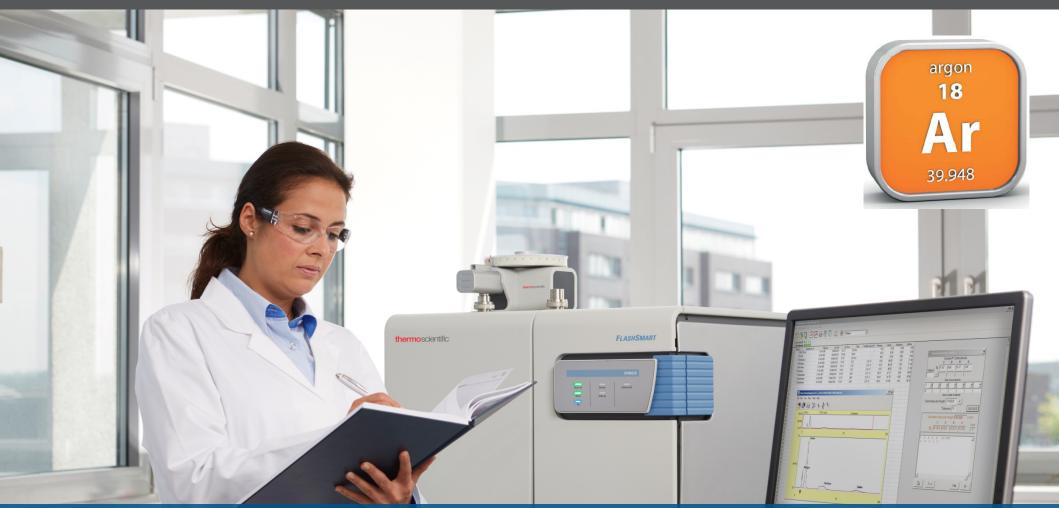
AOAC 990.03 Official Method

Requirements:

- The analysis of Nicotinic acid, Lysine chloride and a mixture of corn grain and soybean according to the AOAC 990.03 Performance Requirements (Association of Official Analytical Chemists) in which is indicated that the system must meet or exceed following minimum performance specification:
- System must be capable of measuring Nitrogen in feed materials containing 0.2 20 % Nitrogen.
- Accuracy of system is demonstrated by making 10 successive determinations of Nitrogen in Nicotinic acid and Lysine chloride. Means
 of determinations must be within ± 0.15 of the respective theoretical values, with standard deviation ≤ 0.15.
- Suitable fineness of grind is that which gives relative standard deviation (RSD) ≤ 2.0 % for 10 successive determinations of Nitrogen in mixture of corn grain and soybean (2+1) that has been ground for analysis. RSD % = (SD / mean %N) x 100. Fineness (ca. 0.5 mm) required to achieve this precision must be used for all mixed feeds and other nonhomogeneous materials.

Sample	Nicotinic acid	Lysine chloride	Mixture of corn g	rain and soybean
%	Nitrogen %	Nitrogen %	Nitrogen %	Protein %
Data	11.30	15.31	3.27	20.44
	11.30	15.23	3.25	20.29
	11.35	15.16	3.26	20.38
	11.29	15.22	3.24	20.28
	11.37	15.27	3.28	20.52
	11.42	15.11	3.27	20.42
	11.42	15.22	3.25	20.36
	11.44	15.19	3.26	20.39
	11.48	15.19	3.26	20.37
	11.39	15.25	3.28	20.49
Average %	11.38	15.21	3.26	20.39
RSD %	0.576	0.372	0.404	0.379

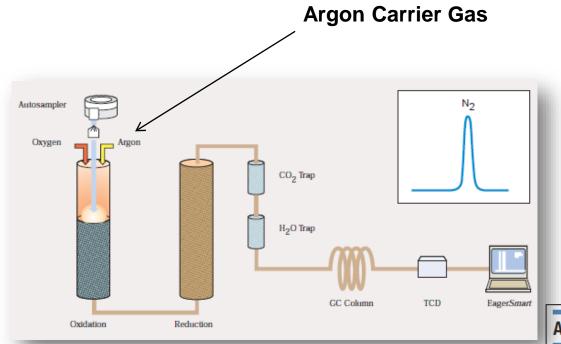
Flash Smart Nitrogen determination according to AOAC 990.03


ThermoFisher SCIENTIFIC

FLASH 2000 Analyzer Argon Gas Option for N and NC analysis

The world leader in serving science

Flash Smart Analyzer Argon Gas Option for N and NC analysis



Eliminate the Risk \rightarrow Switch from Helium to Argon

- Argon is already available
- Comparable results with He carrier gas
- Up to 50% lower cost than Helium

Flash Smart Nitrogen Configuration

Analytical conditions	
Combustion Furnace Temperature:	950 °C
Reduction Furnace Temperature:	840 °C
Oven Temperature:	50 °C (GC column inside the oven)
Argon Carrier Flow:	60 ml/min
Argon reference Flow:	60 ml/min
Oxygen Flow:	300 ml/min
Sample Delay:	10 sec
Run time:	10 mins

BIPEA Reference Materials

Sample	Moisture	Fat	Carbohydrate	Kjeldahl Protein		Combustion Protein	
	%	%	%	Av. %	Tolerance	Av. %	Tolerance
Bipea - Feed for Sow 3/2009	9.8	2.8	48.7	16.0	0.6	16.2	0.6
Bipea - Dehydrated Alfalfa 3/2009	7.7		29.3	14.8	0.6	15.1	0.6
Bipea - Hyperproteic Powder 1/2008		0.8		85.4	3.4	86.4	3.5

Data obtained with Flash Smart using Argon as carrier gas

Sample	Bipea – Feed for Sow		Bipea – Dehy	drated Alfalfa	Bipea - Hyperp	proteic Powder
%	N %	Protein %	N %	Protein %	N %	Protein %
	2.67	16.71	2.47	15.46	13.53	84.59
	2.67	16.67	2.49	15.57	13.56	84.74
	2.66	16.63	2.45	15.34	13.67	85.42
	2.60	16.22	2.41	15.04	13.62	85.10
	2.63	16.41	2.47	15.41	13.69	85.57
	2.67	16.72	2.48	15.49	13.66	85.36
	2.67	16.66	2.37	14.81	13.60	85.02
	2.67	16.71	2.44	15.27	13.63	85.21
	2.61	16.32	2.38	14.87	13.71	85.72
	2.65	16.55	2.37	14.79	13.67	85.43
Average %	2.65	16.56	2.43	15.21	13.63	85.22
RSD %	1.02	1.09	1.93	1.97	0.42	0.42

N/protein Data Comparison – Argon vs Helium

Weight Weight Protein Ν RSD RSD Ν RSD Protein RSD Name % % % (mg)% % % % % (mg)1.91 11.93 1.92 11.98 Wheat 130 - 140 1.93 0.79 12.05 0.87 160 - 200 1.93 0.79 12.06 0.75 flour 12.14 1.94 1.90 11.88 1.25 7.84 1.26 7.88 1.25 7.83 0.27 150 - 2001.26 7.93 Maize 1 130 - 140 0.46 0.46 0.32 1.26 7.87 1.27 7.91 1.48 9.24 1.50 9.41 Maize 2 130 - 140 1.49 0.399.29 0.31 150 - 200 1.50 0.38 9.39 0.38 1.49 9.29 1.49 9.34 4,79 29.92 4.79 29.92 DDGS 120 - 130 4.78 0.55 29.85 0.64 150 - 160 4.80 0.31 30.03 0.38 4.83 30.21 4.77 29.80 6.02 37.62 6.10 38.15 Sunflower 100 - 120 6.08 0.62 38.01 0.65 170 - 200 6.07 0.25 37.91 0.31 1 6.09 38.08 6.09 38.07 5.69 35.54 5.65 35.31 Sunflower 35.95 130 - 140 5.75 0.53 0.58 170 - 200 5.61 0.37 35.05 0.37 2 5.71 35.68 5.64 35.22 7.98 8.11 50.66 49.87 Soya 130 - 150 8.08 0.71 50.51 0.70 170 - 180 8.03 0.31 50.21 0.34 8.00 49.99 8.01 50.06 9.31 58.20 9.34 58.36 9.27 9.33 Gluten 1 130 - 140 0.22 57.92 0.24 170 - 180 0.16 58.33 0.14 58.02 58.21 9.28 9.31 9.32 9.31 58.18 58.28 9.37 130 - 140 9.35 0.38 58.44 0.40 170 - 180 58.55 0.25 Gluten 2 0.28 9.28 57.98 9.36 58.50 2.95 18.43 2.91 18.18 Poultry 120 - 140 2.98 1.22 18.62 1.22 150 - 160 2.961.09 18.53 1.13 feed 1 2.96 18.48 2.90 18.13 27.30 4.31 26.96 4.37 Poultry 27.17 130 - 140 4.39 1.14 27.43 1.11 150 - 160 4.35 0.82 0.91 feed 2 4.30 26.87 4.42 27.65

Argon Gas

Helium Gas

Animal Feed

Thermo Fisher SCIENTIFIC

Application Notes available

- AN 42157 Thermo Scientific FLASH 2000 Protein Analyzer for Cereals and Beans
- AN 42159 Reproducibility of Nitrogen / Protein determination with the Thermo Scientific FLASH 2000 Protein Analyzer
- AN 42186 Sulfur determination in Food by the Thermo Scientific FLASH 2000 Elemental Analyzer coupled with FPD detector
- AN 42196 Characterization of Food and Animal Feed Related Products by the Thermo Scientific FLASH 2000 Elemental Analyzer
- TN 42214 Analytical Comparison of the Thermo Scientific FLASH 2000 Nitrogen / Protein Analyzer with the traditional Kjeldahl Method
- TN 42215 Technical Comparison of the Thermo Scientific FLASH 2000 Nitrogen / Protein Analyzer with the traditional Kjeldahl Method
- AN 42200 Nitrogen / Protein determination in Animal Feed by the Thermo Scientific FLASH 2000 Analyzer using Argon as Carrier Gas
- AN 42201 Nitrogen / Protein determination in Flours by the Thermo Scientific FLASH 2000 Analyzer using Argon as Carrier Gas
- AN 42203 Thermo Scientific FLASH 2000 Nitrogen / protein Analyzer using Argon as Carrier Gas: Stability, Linearity, Repeatability and Accuracy
- AN 42262 Nitrogen/Protein Determination in Food and Animal Feed by Combustion Method (Dumas) using the Thermo Scientific Flash *Smart* Elemental Analyzer

OEA CookBook

OEA CookBook Organic Elemental Analysis

4th Edition Your Samples, Our Experience

The OEA CookBook includes a chapter on **OEA-IRMS applications**

OEA CookBook

FLASH 2000			OEA / FLASH 200	00 / Nitrogen/F	Protein Analy	sis / Alphabeti	cal Index
							B / Beans
Classical Organic Elemental Analysis					;	0 0 N/Protei	n determination
Sulfur Analysis (FPD)	BARLEY • BEANS •	BRAN • C	CORN • LENTILS • MIL		R • PEAS • RICE	• SOYA • WHEAT	(continued)
	Sample		N %	F	Protein %	RSD	
Nitrogen/Protein Analysis	Corn		1.137		7.104	0.73	
	Soya		6.207		38.796	0.54	
Overview	Corn-soya (2:1)		2.545		15.907	0.6	
010111011	Barley		1.590		9.939	1.3	
Analytical Index	Bran		2.271		14.192	0.8	
/ mary tear matex	Wheat		1.742		10.889	0.30	
Alphabetical Index	Oats-wheat mix		2.871		16.361	0.70	
, apriabolical matrix	Rice		1.101		6.270	0.83	
	Seeds of cartam		2.375		14.845	1.53	
	Lentils		3.840		23.993	0.5	
	Beans		3.544		22.150	0.69	
	Peas		3.873		24.204	0.53	
	Milk		0.510		3.254	0.70	
	Milk powder		1.840		11.741	0.46	50
	Sample information						
	Standard:	Aspartio	c acid	10.52 %N			
Search	Standard weight: N/Protein factor:	Mills and		50 - 100 mg			
Search	N/Protein factor:	Milk pro Others	oducts	6.38 6.25			
Main Menu	Sample weight:	Others		200 - 300 mg			
Print	OxyTune Category:	B cat, A	A cat. for milk powder	200 300 mg			
Bibliography	Notes						
Contact Us	Each value is the aver		runs. ted in a rotary mill, 1 mm	granulomotov			
OEA Distributor Network	Crops and beans have	been trea	ted in a locary min, i min	granulometry.			
Thermo							6.2

ThermoFisher SCIENTIFIC

Food Origin & Authenticity: Revealing the Truth using Isotope Fingerprints

Drs. Christopher Brodie, Lionnel Mounier & Lin-Tang GOH* Factory Product Manager (Germany) for IRMS, *Regional Senior Manager (SEA) for Mass Spectrometry

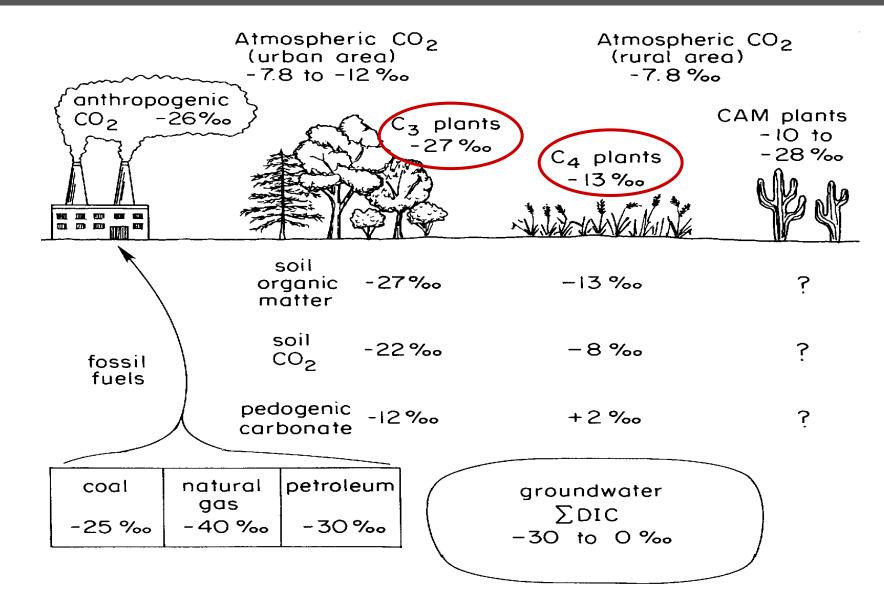
The world leader in serving science

Isotope Fingerprint for Food Authenticity and Food Integrity

- Food and beverage products have a fingerprint, a unique chemical signature that allows the product to be identified.
- To visualize this fingerprint, Isotope Ratio Mass Spectrometry (IRMS) can be used, identifying the isotope fingerprint of the product.
- The isotope fingerprint is region or process specific (Table 1), which means that products can be differentiated based on geographical region (cheese, coffee, sugar, fish and animal feeding areas), botanical processes (beans, seeds, olive oil, vanilla), soil and fertilization processes (fruits and vegetables) and fraudulent practices (sugar addition to honey, watering of wines and spirits).

Some Examples of Food Fraud

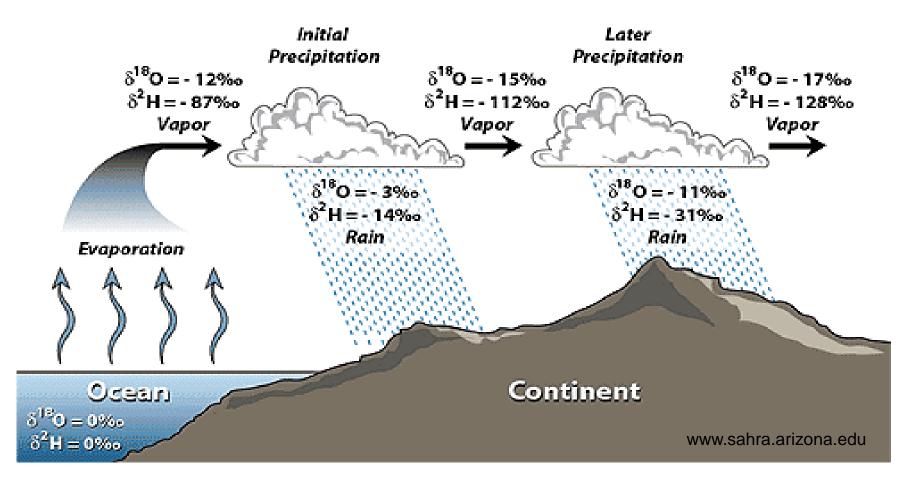
- Food and Beverages:
 - Fruit juices
 - Wine
 - Vinegar
 - Beers
 - Alcoholic beverages
 - Honey
 - Olive oils
 - Tea, Coffee
 - Dairy products
 - Meat
 - Fish
 - Fruit and vegetables


Potential Fraud:

Watering, sweetening Watering, chaptalization, label declaration Origin identification (maize, cider, grape, ...) Origin identification (grains other than malt) Mislabeling, origin identification Addition of inverted and cane sugars Addition of cheaper oils Mislabeling and origin Addition of undeclared milk, Mislabeling Mislabeling (origin) and feeding diet Mislabeling (wild \leftrightarrow farmed) Mislabeling (organic versus inorganic)

Summary of isotope fingerprints in Food Fraud

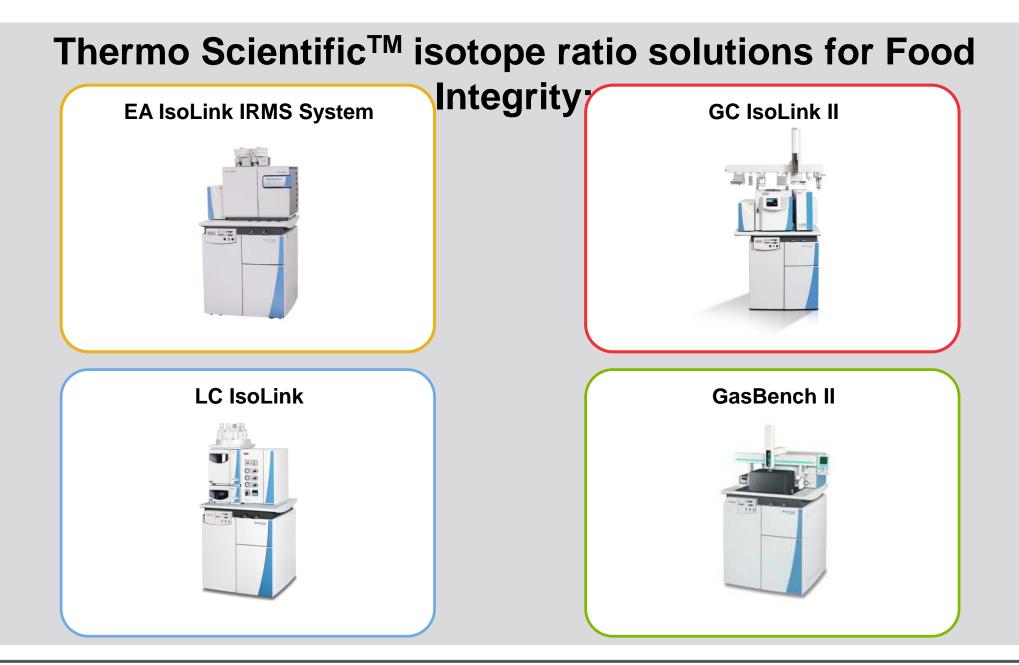
Stable Isotope	What is the biogeochemical interpretation?	What is an example of food fraud interpretation?	What products can be affected?
Carbon	Photosynthesis (C3, C4 and CAM pathways)	Adulteration (e.g. sweetening with cheap sugar)	Honey; Liquor; Wine; Oliver oil; Butter
Nitrogen	Fertilizer assimilation by plants	Mislabeling (Differentiate organic and non-organic)	Vegetables; Animal meat
Sulfur	Local soil conditions; Proximity to shoreline	Origin of product	Vegetables; Animal meat; Honey
Oxygen	Local-regional rainfall; geographical area	Watering of beverages; Origin	Coffee; Wine; Liquor; Water; Sugar; Meat
Hydrogen	Local-regional rainfall; geographical area	Watering of beverages; Origin	Coffee; Wine; Liquor; Water; Sugar; Meat


What can δ^{13} C tell us?

• δ^{13} C values change due to fractionation induced by photosynthesis

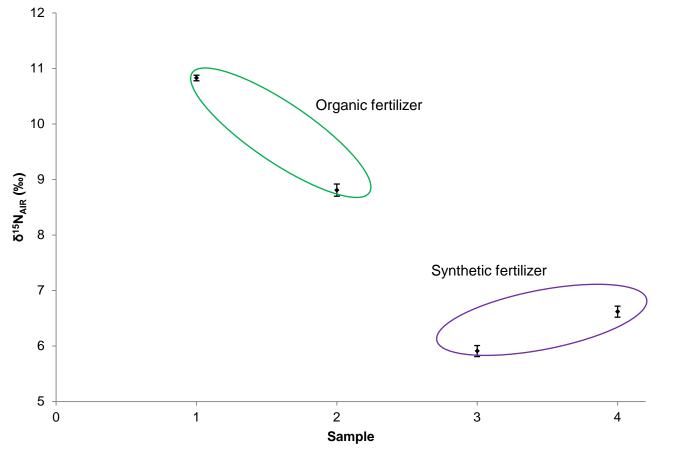
• For example, this can differentiate between products derived from C3 and C4 plants

What can δ^2 H and δ^{18} O tell us?

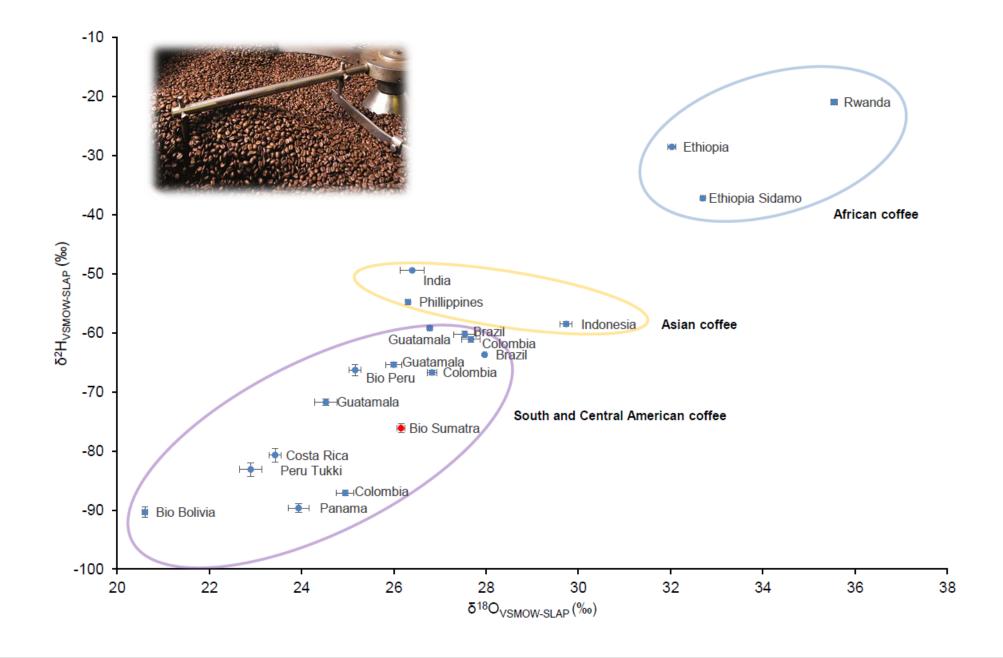

 Hydrogen and oxygen isotopes are fractionated in the water cycle through evaporation, transpiration, sublimation, condensation and precipitation processes across the latitudes, giving rise to unique local – regional signatures, which transfer to biological material during their growth period

What can $\delta^{15}N$ and $\delta^{34}S$ tell you?

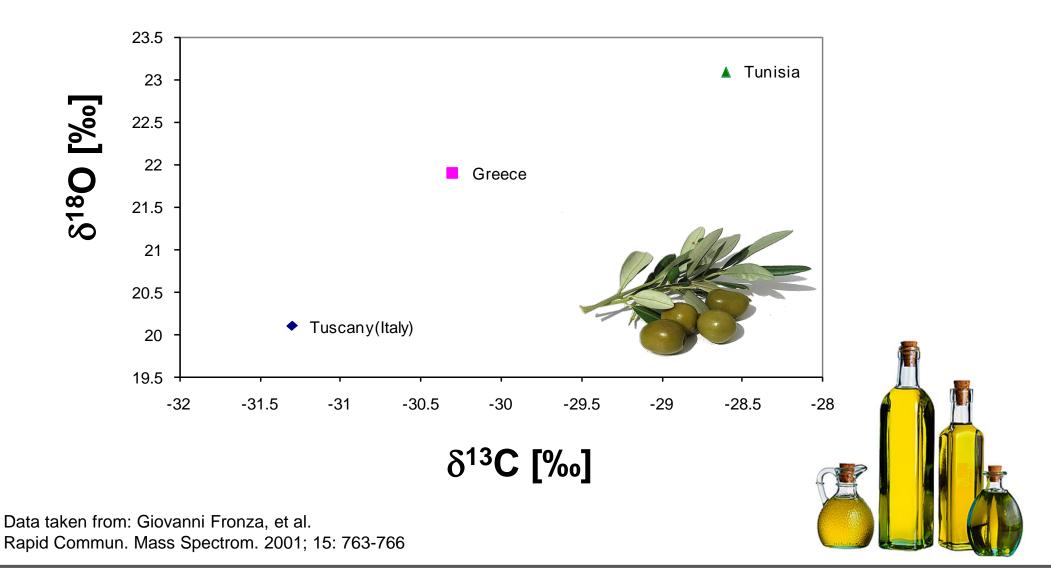
- Nitrogen Isotopes in food and beverages can provide information on:
 - Nitrogen sources for plants (e.g. fertilization)
 - Sources for animal feed stuffs
- Sulfur Isotopes in food and beverages can provide information on:
 - Sulfur sources for plants (e.g. fertilization), complimenting Nitrogen
 - Coastal versus inland geography (sea-spray)
 - Sources for animal feed stuffs



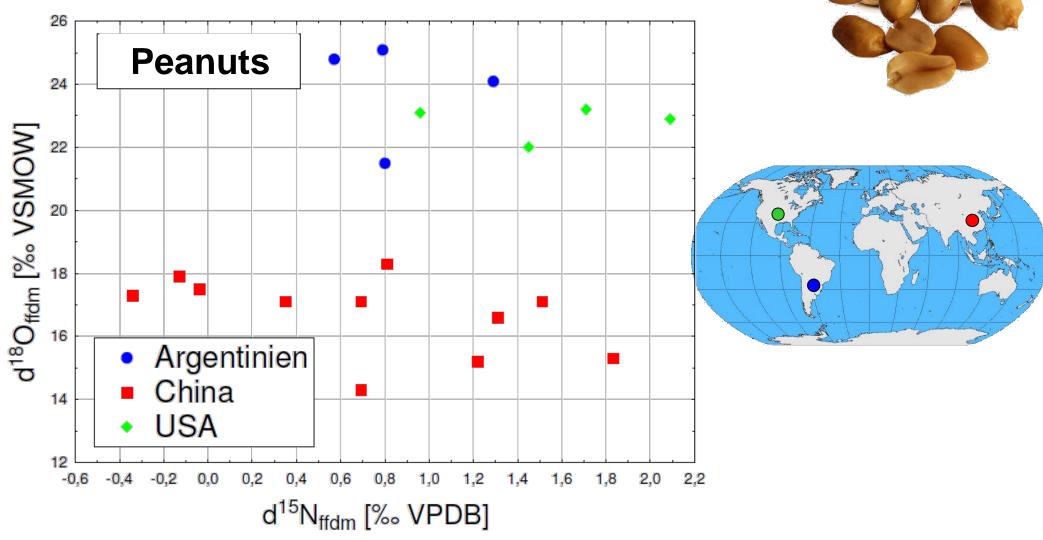
Thermo Scientific solutions for Food Industry



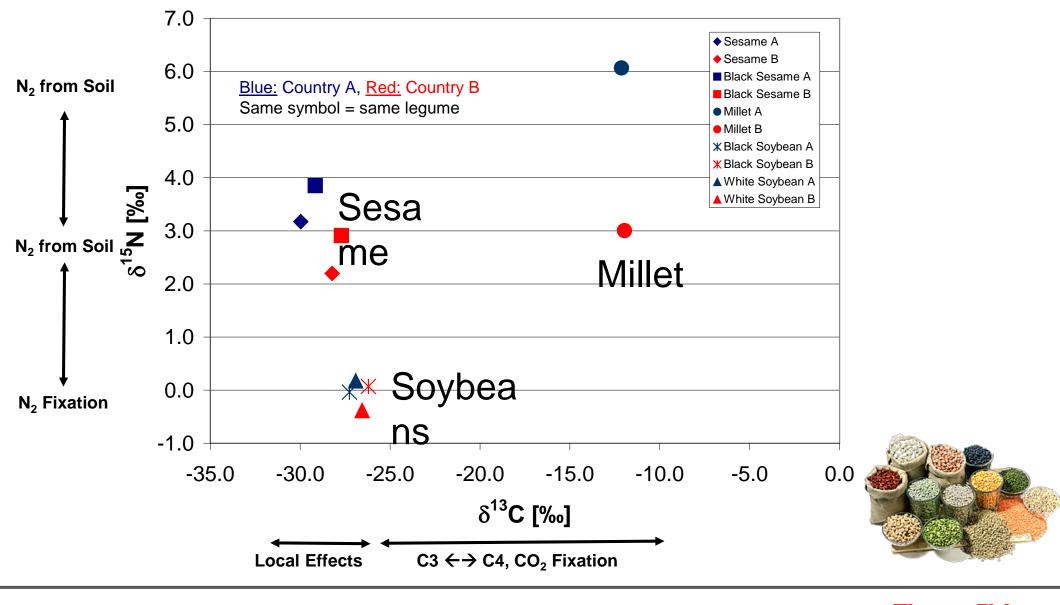
Mineral fertilizer show low N values while organic fertilization by compost reults in higher N values.


EA-IRMS: δ^2 H and δ^{18} O in Roasted Coffee Beans

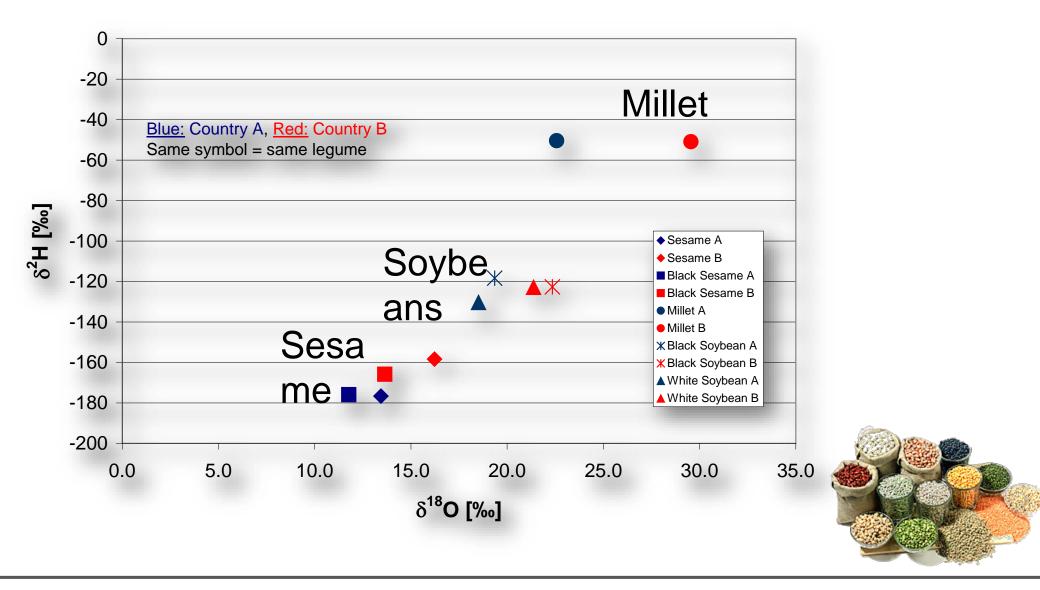
EA-IRMS: δ^{13} C and δ^{18} O in Olive Oil


Where does your olive oil come from?

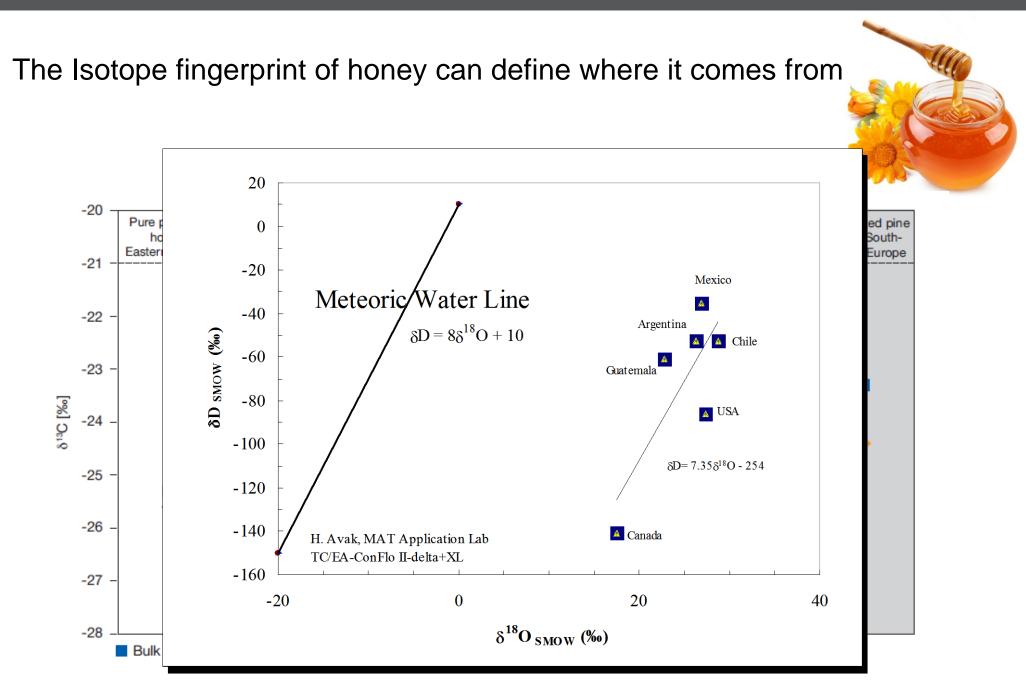
ThermoFisher SCIENTIFIC


EA-IRMS: Origin of Nuts

δ^{18} O as indicator for origin δ^{15} N often related to fertilizers

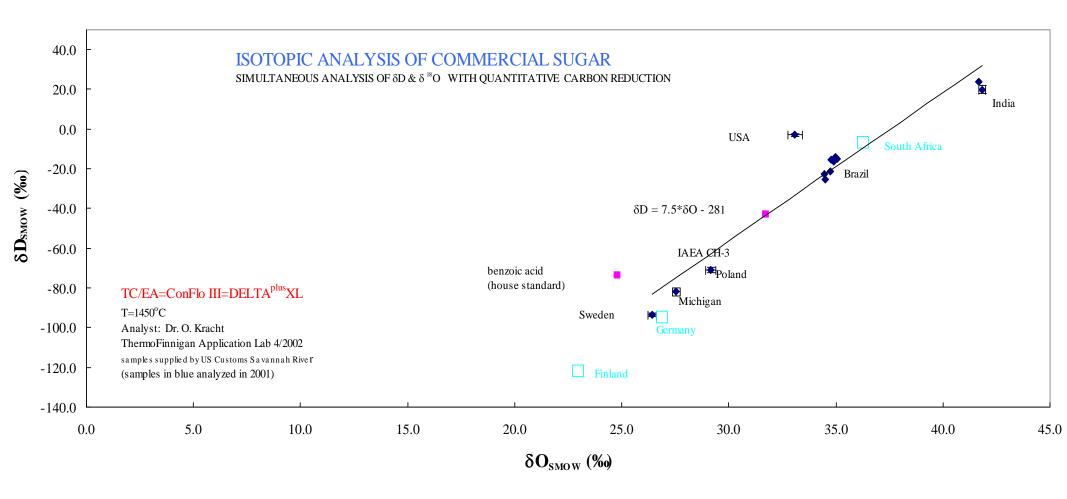

Agricultural products from Korea (Blue) and China (Red)

ThermoFisher SCIENTIFIC


EA-IRMS: Origin of seeds, millet and soybean

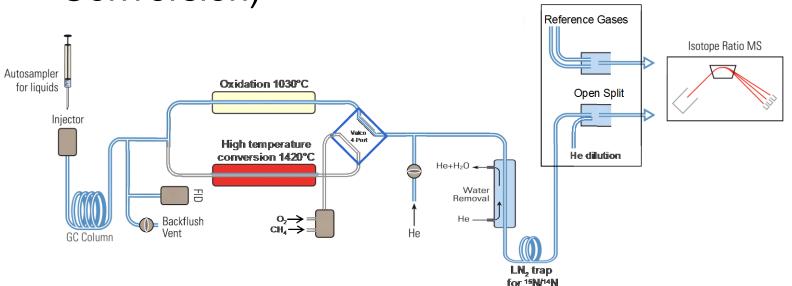
Agricultural products from Korea (Blue) and China (Red)

ThermoFisher SCIENTIFIC


EA-IRMS: Isotopes in honey define origin

EA-IRMS: H and O Isotope fingerprints for sugar origin

The origin of Sugar as defined by Hydrogen and Oxygen isotopes


Carbon isotope fingerprints can determine if label claims are correct: Is your sugar really beet sugar?

Sample	$\delta^{13}C_{VPDB}$ (mean ± 1 σ)	Label Claim	Do the δ ¹³ C fingerprints agree?
China	-12.61 ± 0.15	Corn sugar	Corn sugar
France	-12.14 ± 0.12	Cane sugar	Cane sugar
Hawaii (Brown)	-12.41 ± 0.13	Cane sugar	Cane sugar
Italy (Brown)	-12.22 ± 0.05	Cane sugar	Cane sugar
Ivory Coast	-12.24 ± 0.19	Cane sugar	Cane sugar
Philippines	-12.95 ± 0.09	Cane sugar	Cane sugar
San Francisco	-12.89 ± 0.04	Cane sugar	Cane sugar
Senegal	-12.42 ± 0.25	Cane sugar	Cane sugar
United Kingdom	-12.75 ± 0.04	Cane sugar	Cane sugar
Dubai	-25.02 ± 0.02	Not stated	Beet sugar
Germany	-26.69 ± 0.08	Not stated	Beet sugar

Thermo Scientific GC IsoLink II

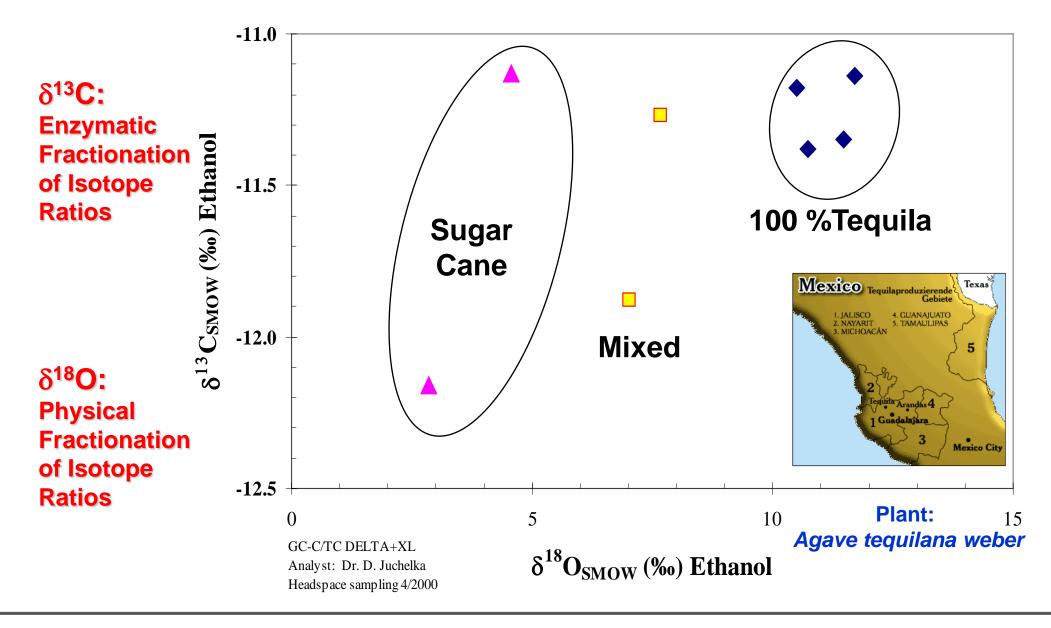
Compound Specific Isotope Analysis for ¹³C/¹²C Isotope Ratios and ¹⁵N/¹⁴N Isotope Ratio (GC-Combustion) and ²H/¹H Isotope Ratios and ¹⁸O/¹⁶O Isotope Ratio (GC-High Temperature Conversion)

Plant

This liquor is made exclusively in Mexico from the agaves,

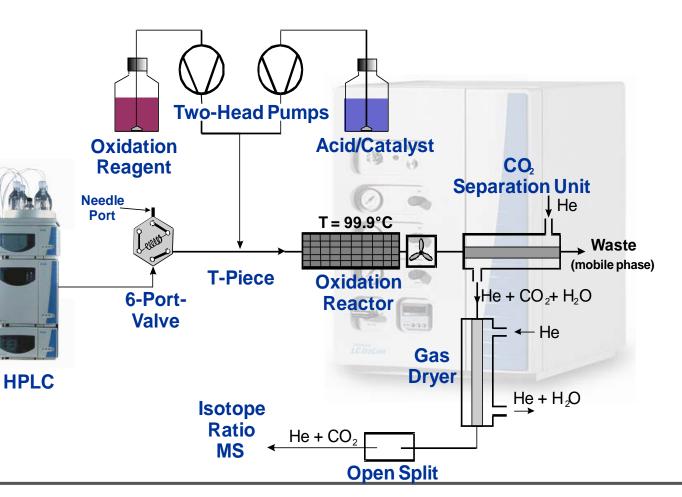
Agave tequilana weber.

Origin of Tequila Harvest: after 6-10 years

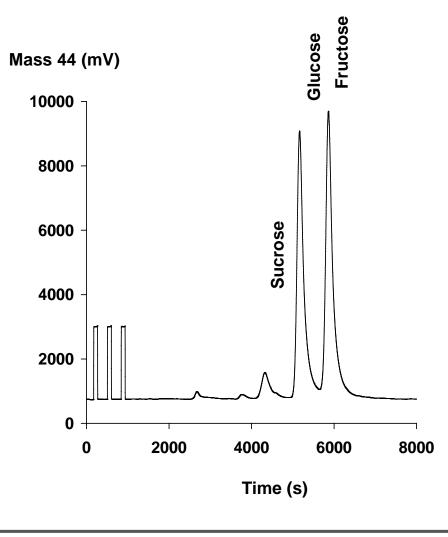

Tequila is produced **exclusively** in 5 regions

of Mexico:

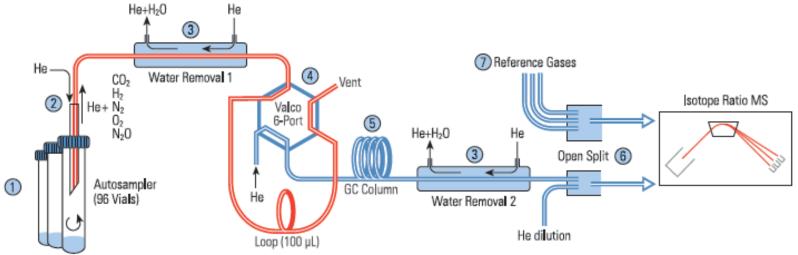
- ➤ Jalisco,
- > Nayarit,
- > Michoacán,
- > Guanajuato,
- Tamaulipas


GC-IRMS: Isotopes can tell if Tequila is real or not

Thermo Fisher SCIENTIFIC

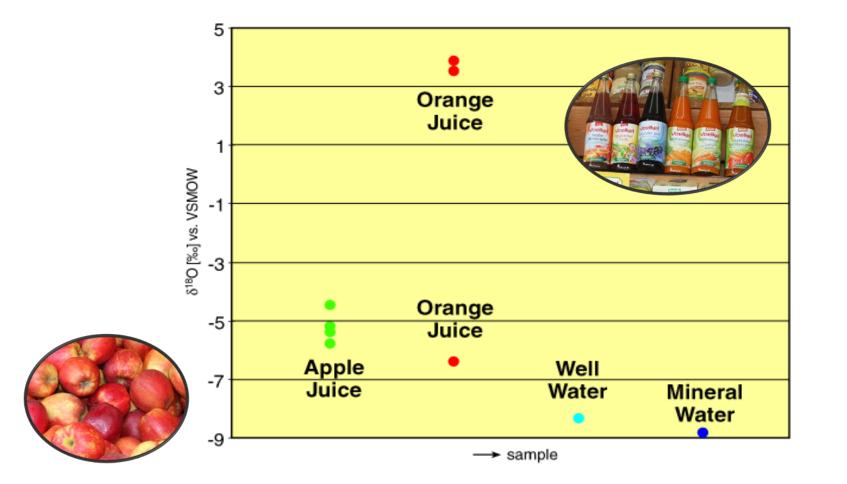

Thermo Scientific LC IsoLink

The carbon isotope value of fructose additives can identify adulterated honey



Honey	Glucose δ^{13} C‰	Fructose δ ¹³ C‰	Area Fru/Glu	
А	-27.9	-27.8	1.13	pure
В	-25.1	-26.4	2.17	adulterated
С	-26.5	-26.5	1.35	pure
D	-26.1	-26.0	4.53	adulterated
Е	-11.2	-13.9	0.65	adulterated

- Absolute δ^{13} C value
- δ¹³C difference, Glu –
 Fru
- Ratio of area, Fru / Glu


Thermo Scientific GasBench II

Analysis of fruit juices with the GasBench II

¹⁸O equilibration of water in wine from China, Australia & Europe

Hoo-Roo_Austrialia QYTB1 HeBiNuo1999_ZhangYe-1 QYTB GreatWall2002_T-1 COTES DE CASTILION_France-1 GreatWall1995_ChangLi-2 QYTB2	X 7.39 -0.92 5.27 -8.13 5.60 1.63 2.13 -20	σ1 0.11 0.06 0.09 0.07 0.03 0.07 0.07	n 3 3 3 3 3 3 3 3 3 3	QYTB1assigned for SMOWQYTB2assigned for SLAPQYTBChinese QC (-8.14 permil δ18O)
Dragon Seal-ShaCheng-9 GreatWall_S-2 Dynasty_TianJin-6 Dynasty_TianJin-2	-20 -0.04 4.96 2.33 2.32	0.10 0.15 0.10 0.24	3 3 2 3	• QYTB (QC) = (-8.13 permil δ ¹⁸ Ο)
Dynasty_TianJin-1	5.28	0.08	3	 Average σ1 is 0.09 (n=31) Measurements showed
GreatWall_S-1	5.02	0.13	2	
GreatWall_S-4	3.69	0.09	3	
MouTai_ChangLl-3	-0.70	0.10	3	
GreatWall_S-3	4.25	0.07	2	
Gynasty_TianJin-4	0.40	0.13	3	perfect agreement what is expected for a normal pure
Gynasty_TianJin-3	5.37	0.12	2	
MoGao_WuWei-2	4.69	0.04	3	
Grand Dragon_YanTai-1	-0.52	0.21	3	
GreatWall_ShaCheng-3	3.96	0.04	3	
Virtopia_YunNan-1	1.66	0.05	3	water measurement
ChangYu_YanTai-4	1.00	0.08	3	
GreatWall Longxi99_HuaiZhuo-1	2.28	0.11	3	
YunnanHong_YunNan-5 Baroncini_Italy YunnanHong_YunNan-4 Ice Wine_TongHua Grand Dragon_YanTai-2 GreatWall1995_ShaCheng-2 Dragon Seal_ShaCheng-10	-7.42 2.96 -3.47 -7.41 1.31 4.13 0.15	0.02 0.23 0.06 0.11 0.09 0.04 0.05	3 3 3 3 3 3 3 3 3 3	 Total n = 31 of which 27 are triplicates and 4 are duplets Delta V Advantage

GasBench II and Flash HT data with Delta V

¹⁸ O/ ¹ analyte	⁶ O by GB-IRMS IAEA accepted Five value $\delta^{18} O/^{16} O \delta^{18}$ vsmow [‰] vsmow	lash HT ³ O/ ¹⁶ O	GE	Dev ma	uracy between vices & Organic rich atrices ilk and coffee cream 1σ comment
V-SMOW 06	0	0.00	0.05	0.01	0.02 measured as sample
V-SMOW 03	0	n.d.	n.d.	0.03	0.23 measured as sample
SLAP	-55.50	n.d.	n.d.	-55.50	0.04 measured as sample
GISP	-24.50	-24.80	0.06	-24.76	0.06 measured as sample
GISP 98		n.d.	n.d.	-24.25	0.08 measured as sample
GISP 06		n.d.	n.d.	-24.81	0.08 measured as sample
orange juice		n.d.	n.d.	-7.04	0.04 measured as sample
coffee cream		n.d.	n.d.	1.40	0.001 measured as sample
HBW-1		n.d.	n.d.	-8.05	0.000 measured as sample
 HBW-3		-7.91	0.04	-7.86	0.01 measured as sample
Ethanol		24.26	0.08	n.d.	n.d. measured as sample
Flt PTSW				4.13	0.58 wine as sample
analyzed by Ther	ma Electron (Brom	an) IDMC A	nnlightion	a Laboratory lu	Ing 2006

analyzed by Thermo Electron (Bremen) IRMS Applications Laboratory, June 2006 all ratios and σ 1 resultant from SMOW/SLAP correction

Flash HT with AS 3000

GB used with 4ml, 12ml vials and 100 $\mu l,$ 200 μl sample, respectively

Official methods and Isotope Fingerprints

Product	Official method	Isotope fingerprint	Sample	What does it address?	Analytical solution
Wine					
	OIV-MA- AS2-12	õ ¹⁸ O	Water	Adulteration, Geographical origin, Year of vintage	Thermo Scientific [™] GasBench II System, Thermo Scientific [™] Dual Inlet
	OIV-MA- AS312-06	ô ¹³ C	Ethanol, Wine must, Grape sugar	Adulteration, origin	Thermo Scientific [™] EA IsoLink [™] IRMS System, Thermo Scientific [™] GC IsoLink II [™] Interface for GC-IRMS
	OIV-AS312-07	ð ¹³ C	Glycerol in wines	Adulteration by addition of glycerol from C4 maize or Fossil sources	GC IsoLink II Interface for GC-IRMS, Thermo Scientific™ LC IsoLink [™] Interface for IRM-LC/MS
18 - 14	OIV-OENO 510-2013	ð ^{t3} C	Acetic acid in wine, vinegar		GC IsoLink II Interface for GC-IRMS, EA IsoLink IRMS System
	OIV-OENO 510-2013	ô ¹⁸ O	Water in wine, vinegar	Adulteration, Geographical Origin, Year of Vintage	Thermo Scientific [™] GasBench II System, Dual Inlet
Sparkling wine					
	OIV-MA- AS314-03	ô ^{t3} C	CO ₂ in sparkling wine	Origin and authenticity of sparkling wine	GasBench II System, EA IsoLink IRMS System, GC IsoLink, Dual Inlet
Spirits					
the state	OIV-AS312-07	ð ¹³ C	Glycerol in spirits	Adulteration by addition of glycerol from C4 maize or Fossil sources	GC IsoLink II Interface for GC-IRMS, LC IsoLink Interface for IRM-LC/MS
Fruit Juice					
	EU - CEN 1995	δ ^{t3} C	Sugars	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
	USA – AOAC 1981	δ¹ ³ C	Sugars	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
	EU - CEN 1998	δ ^{t3} C	Sugars and pulp	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
Vy By	EU - CEN 1995	δ ² H and δ ¹⁸ O	Water	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
	AOAC method 2004.01	δ ¹³ C	Ethanol (From Fermentation)	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
Fruit Juice (Concent	trate)	6 6 2 5			
Î.	AOAC 1992	ô ¹⁸ O	Water	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, EA IsoLink IRMS System
Honey	4040 11 1				
	AOAC method 991.41	ð ¹³ C	C-4 plant sugars at concentration >7%	Adulteration of honey	EA IsoLink IRMS System
	AOAC method 998.12	ð¹³C	C-4 plant sugars at concentration >7%	Adulteration of honey	EA IsoLink IRMS System
Cheese					
de la	EU Reg 548/2011	ð¹3C	PDO	PDO Grana Padano	EA IsoLink IRMS System

Thank You!

ThermoFisher S C I E N T I F I C

The world leader in serving science

