

Trace elemental analysis solutions for your application

June 6, 2018

- Understanding how each technique works
- Components of instrument
- Selection Criteria
- Application Fields

Flame Atomic Absorption Spectroscopy (FAAS)

- Graphite Furnace Atomic Absorption Spectroscopy (GFAAS)
- Inductively Coupled Plasma Emission Spectroscopy (ICP-OES)
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Most labs will have several techniques available.

How do you choose the best one to use for a given task ?

What is atomic absorption spectrometry? (AAs)

- The technique uses basically the principle that free atoms generated in an atomizer can absorb radiation at specific frequency
- AAs quantifies the absorption of ground state atoms in the gaseous state
- The atoms absorb UV or Vis light and make transitions to higher electronic energy levels
- The analyte concentration is determined from the amount of absorption

Flame Atomic Absorption Spectroscopy (FAAS)

Graphite Furnace Atomic Absorption Spectroscopy (GFAAS)

Element		8 2]
Fr Ra Ac Ku	He B C N O F Ne Al Si P S Cl Ar o Ni Cu Zn Ga Ge As Se Br Kr h Pd Ag Cd In Sn Sb Te I Xe r Pt Au Hg Tl Pb Bi Po At Rn	OK Cancel Help Cook Book	
ID:	Technique:	ne 💽	

Light source : Hollow cathode lamp (HCL)

Remember atoms absorb and emit light at a specific wavelength Light is passed through the flame from a Hollow Cathode Lamp (HCL) specific to the element of analytical interest

oms absorb and emit light at a specific velength

In the passed through the flame from a Hollow Cathode Lamp (HCL) specific to the element of analytical interest

Sputtering

(-)

Excitation

Emission

What is atomic absorption spectrometry? (AAs)

Sci

Spec

Flame Atomic Absorption Spectroscopy (FAAS)

Graphite Furnace Atomic Absorption Spectroscopy (GFAAS)

This technique is essentially the same as flame AA, except the flame is replaced by a small, electrically heated graphite tube, or cuvette, which is heated to a temperature up to 3000°C to generate the cloud of atoms. The higher atom density and longer residence time in the tube improve furnace AAS detection limits by a factor of up to 1000x compared to flame AAS, down to the *sub-ppb range*. However, because of the temperature limitation and the use of graphite cuvettes, refractory element performance is still somewhat limited.

- ✓ Superior sensitivity detect anaytes at concentrations 10-100 times lower than flame
- ✓ High conversion efficiency of sample into free atoms.
- Low sample volumes 20 μL.
- Directs analysis of some types of liquid sample
- ✓ Low spectral interference due to generally higher temperatures.
- ✓ Is fully automated and can be left to run overnight

Atomizer	Lead (Pb)	Copper (Cu)	Arsenic (As)
Flame	0.10 mg/L	0.04 mg/L	0.40 mg/L
Furnace	0.07 <mark>µ</mark> g/L	0.09 <mark>µ</mark> g/L	0.26 <mark>µ</mark> g/L

- A plasma will excite the atoms and ions that travel through it. When an atom or ion is excited, its electrons jump from a lower to higher energy level. Upon relaxation of these electrons to their initial 'ground' state, energy is emitted in the form of photons. The emitted photons possess wavelengths that are characteristic of their respective elements
- A detector measures the intensity of the emitted light, and calculates the concentration of that particular element in the sample
- Temperatures as high as 10,000°C, where even the most refractory elements are atomized with high efficiency. As a result, detection limits for these elements can be orders of magnitude lower with ICP than with FAAS techniques, typically at the 1-10 parts-per-billion level.

What is Inductively Coupled Plasma (ICP-OES)?

How to create the plasma?

RF power is applied to the load coil, an alternating current moves back and forth within the coil, or oscillates. This RF oscillation of the current in the coil causes RF electric and magnetic fields to be set up. With argon gas being swirled through the torch, a spark is applied to the gas causing some electrons to be stripped from their argon atoms. These electrons are then caught up in the magnetic field and accelerated by them. Adding energy to the electrons by the use of a coil in this manner is known as inductive coupling

How to create the plasma?

The ICP discharge appears as a very intense, brilliant white, teardrop-shaped discharge. Which can be listed as several zone:

- Induction region (IR)
- Preheating zone (PHZ)
 - desolvation, vaporization, atomization
- Initial radiation zone (IRZ)
 - excitation and/or ionization

• Normal analytical zone (NAZ)

- measurement of the emission
- Tail Plume

- oxide formation, self absorption, molecular emission/absorption

Process occurring during Atomization and Ionization

Consist of :

- Nebulizer
- Spray chamber
- Torch plasma and Viewing positions
- Monochromator
- Detector

Nebulizer are devices that convert a liquid into an aerosol that can be transported to the plasma.

- made from glass or plastics such as PFA
- Flow rate of between 0.01 and 3 mL/min
- Concentric nebulizer for use with samples containing up to 3% TDS
- The glass construction should not be used with hydrofluoric acid or caustics such as the alkali hydroxides. Quartz construction is more resistant to chemical attack.

The purpose of the spray chamber is to remove droplets produced by the nebulizer that are >8 µm in diameter.

- Glass cyclonic spray chamber
- Important considerations here include the wash-in time, wash-out time, stability, and sensitivity
- Drainage process might be smooth and continuous.
- Analyst might observe faster wash-in and wash-out times with glass construction than with polymer due in part to better wettability of the glass (lack of beading).

Sample Introduction - Torch

- made from Quartz
- Auto alignment of the torch in the torch box
- Ease of use for routine maintenance

SUGC

Interference : Axial viewing

Spec

Monochromator and Detector

- Simultaneous analysis was carried out by using
- Echelle grating optics and coupled to solid state detector also know "Charge transfer device"

Charge Injection Devices

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry which is capable of detecting metals and several non-metals at concentrations as low as one part in 10¹² (ppt). This is achieved by ionizing the sample with inductively coupled plasma (isotope ions) and then using a mass spectrometer to separate and quantify those ions.

Process occurring during Atomization and Ionization

Spec

The positively charged ions that are produced in the plasma are extracted into the vacuum system, via a pair of interface "cones" and the "extraction lens"

(<1x10⁻⁵ torr) low pressure region of the mass spectrometer

atmospheric pressure

(1-2 torr)

Vacuum region

Interface region

Simplified torch and injector maintenance

https://www.youtube.com/watch?v=4xM_hNrOZOU

Rapid replacement of sample and skimmer cones

https://www.youtube.com/watch?v=r_6SZCb8f9A

How to maintain low background and drift ?

Mass Analyzer

Sci Spec
ANALYTE	POTENTIAL INTERFERENT	PRECURSORS
⁴⁵ Sc	¹³ C ¹⁶ O ₂ , ¹² C ¹⁶ O ₂ H, ⁴⁴ CaH, ³² S ¹² CH, ³² S ¹³ C, ³³ S ¹² C	H, C, O,S, Ca
⁴⁷ Ti	³¹ P ¹⁶ O, ⁴⁶ CaH, ³⁵ Cl ¹² C, ³² S ¹⁴ NH, ³³ S ¹⁴ N	H, C, N, O, P, S, Cl, Ca
⁴⁹ Ti	³¹ P ¹⁸ O, ⁴⁸ CaH, ³⁵ Cl ¹⁴ N, ³⁷ Cl ¹² C, ³² S ¹⁶ OH, ³³ S ¹⁶ O	H, C, N, O, P, S, Cl, Ca
⁵⁰ Ti	³⁴ S ¹⁶ O, ³² S ¹⁸ O, ³⁵ Cl ¹⁴ NH, ³⁷ Cl ¹² CH	H, C, N, O, S, Cl
⁵¹ V	³⁵ Cl ¹⁶ O, ³⁷ Cl ¹⁴ N, ³⁴ S ¹⁶ OH	H, O, N, S, CI
⁵² Cr	³⁶ Ar ¹⁶ O, ⁴⁰ Ar ¹² C, ³⁵ Cl ¹⁶ OH, ³⁷ Cl ¹⁴ NH, ³⁴ S ¹⁸ O	H, C, O, N, S, Cl, Ar
⁵⁵ Mn	³⁷ Cl ¹⁸ O, ²³ Na ³² S, ²³ Na ³¹ PH	H, O, Na, P, S, Cl, Ar
⁵⁶ Fe	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O	O, Ar, Ca
⁵⁷ Fe	⁴⁰ Ar ¹⁶ OH, ⁴⁰ Ca ¹⁶ OH	H, O, Ar, Ca
⁵⁸ Ni	⁴⁰ Ar ¹⁸ O, ⁴⁰ Ca ¹⁸ O, ²³ Na ³⁵ Cl	O, Na, Cl, Ar, Ca
⁵⁹ Co	⁴⁰ Ar ¹⁸ OH, ⁴³ Ca ¹⁶ O, ²³ Na ³⁵ CIH	H, O, Na, Cl, Ar, Ca
⁶⁰ Ni	⁴⁴ Ca ¹⁶ O, ²³ Na ³⁷ Cl	O, Na, Cl, Ca
⁶¹ Ni	⁴⁴ Ca ¹⁶ OH, ³⁸ Ar ²³ Na, ²³ Na ³⁷ ClH	H, O, Na, Cl, Ca
⁶³ Cu	⁴⁰ Ar ²³ Na, ¹² C ¹⁶ O ³⁵ Cl, ¹² C ¹⁴ N ³⁷ Cl, ³¹ P ³² S, ³¹ P ¹⁶ O ₂	C, N, O, Na, P, S, Cl
⁶⁴ Zn	³² S ¹⁶ O2, ³² S ₂ , ³⁶ Ar ¹² C ¹⁶ O, ³⁸ Ar ¹² C ¹⁴ N, ⁴⁸ Ca ¹⁶ O	C, N, O, S, Ar, Ca
⁶⁵ Cu	³² S ¹⁶ O2H, ³² S ₂ H, ¹⁴ N ¹⁶ O ³⁵ CI, ⁴⁸ Ca ¹⁶ OH	H, N, O, S, CI, Ca
⁶⁶ Zn	³⁴ S ¹⁶ O, ³² S ³⁴ S, ³³ S, ⁴⁸ C, ¹⁸ O	O, C, S
⁶⁹ Ga	³² S ¹⁸ O ₂ H, ³⁴ S ₂ H, ³⁷ Cl ¹⁶ O ₂	H, O, S, CI
⁷⁰ Zn	³⁴ S ¹⁸ O ₂ , ³⁵ Cl ₂	O, S, CI
⁷⁵ As	⁴⁰ Ar ³⁴ SH. ⁴⁰ Ar ³⁵ Cl. ⁴⁰ Ca ³⁵ Cl. ³⁷ Cl ₂ H	H, S, Cl, Ca, Ae
77Se	⁴⁰ Ar ³⁷ Cl, ⁴⁰ Ca ³⁷ Cl	Cl, Ca, Ar
78Se	⁴⁰ Ar ³⁸ Ar	Ar
80Se	⁴⁰ Ar ₂ , ⁴⁰ Ca ₂ , ⁴⁰ Ar ⁴⁰ Ca, ³² S ₂ ¹⁶ O, ³² S ¹⁶ O ₃	O, S, Ar, Ca

⁴⁰Ar¹⁶O ⁴⁰Ca¹⁶O

⁴⁰Ar³⁵Cl

How to remove Polyatomic Interference?

Mass Analyzer

Qcell Collision/Reaction Cell (CRC)

- Flatapole technology for improved transmission
- Low mass cut off filters out unwanted precursor ions
- Single mode interference removal with He
- He KED filters out unwanted polyatomic interferences
- Small CRC volume for fast gas exchange, <10s
- Flexibility to work with reactive gases, such as mixtures of O_2 7% dilute H₂ or 1% NH₃
- Non-consumable, zero-maintenance

Collisional retardation / energy filtering

Your Scientific Specialist

Flight of ions through the mass spectrometer

Typical selection criteria includes:

A cross-technique comparison

Flame AA	GFAAS	ICP-OES	ICP-MS
Easy to use	 Very good detection limits 	Easy to use	Excellent detection limits
Very fast	Small sample size	Multi-element	Multi-element
Lowest capital cost	Moderate price	High productivity	High productivity
 Very compact instrument 	 Very compact instrument 	 Very economical for many samples and/or elements 	 Very economical for many samples and/or elements
Good performance		Robust interface	Wide dynamic range
Robust interface		 Excellent screening abilities 	 Fast semi-quantitative screening
Very compact instrument		 High total dissolved solids 	 Hybrid techniques LA- ICP-MS (solids)*, IC or LC- ICP-MS (speciation)*
			Excellent detection limits

Sample Requirements Criteria

Criteria	Flame AA	GFAA	ICP-OES	ICP-MS
Measurement Range				
high > 10%			x	
1 - 10 %	x		X	
ppm	x		X	х
high ppb	x	х	X	х
low ppb		х	X	х
ppt		х		х
Number of samples				
Few	x	х		
Several	x		X	х
Many			x	х
No Elements per Sample				
Single	x	х	X	х
Few (2-5)	x		X	х
Intermediate (5-10)			X	х
Many			X	х
Sample Matrix				
< 3%	X	х	X	х
3-10 %	x	х	x	
> 10%		х	x	

Sci Spec

Precision

Flame AAS	Short term : 0.1-1.0% Long term : 1-2% (2beam optic)	Short term 0.5-5% Long term : highly dependent on the tube type and condition	GFAAS
ICP-OES	Short term : 0.1-2% Long term : <1-5%	Short term : 0.5-2% Long term : <4%	ICP-MS

"Precision" is a measure of the confidence you can have in your measured results

- Long-term precision in any of the techniques can be improved by more frequent instrument calibration or drift correction techniques.
- The use of internal standardization can significantly improve precision in ICP and ICPMS

Speed of Measurement

- How many samples can a particular technique analyze in a given time?
- How many elements can be determined?

Sequential

- ICP-AES (Sequential): 5-6 elements per minute for each sample
- FAAS: 4 seconds per element for each sample
- GFAAS: 2-3 minutes per element for each sample

Simultaneous

ICP-MS: All elements in 2-3 minutes

ICP-AES (Simultaneous): All elements in 2-3 minutes																	
1 H 1.008							,										He 4.003
3 Li 6.941	4 Be 1.008											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.47	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 ¥ 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 WV 183.9	75 Re 186.2	76 Os 190.2	77 Ir 190.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.5	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (147)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
				90 Th 232.0	91 Pa (231)	92 U (238)	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (249)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (254)	103 Lr (257)
											ICP/	îcp-n	MS/A	А		ICP-	MS
											ICP/	'ICP-N	мS			ICP	
•											_						

Analytical

For less than 5 elements per sample,
 FAAS is often the quickest technique,
 depending on the total number of
 samples.

Which / How

- For 5-15 elements, sequential ICP-AES is the optimum choice.
- Above 15 elements, either ICP-MS or simultaneous ICP-OES is the best choice.
- GFAAS will always be the slowest of the techniques

Operating cost

Sci Spec

FAAS	GFAAS	
 acetylene/nitrous oxide gases compressed air source hollow cathode lamps reagents and standards power ICP-OES argon gas quartz torches 	 argon gas hollow cathode lamps graphite tubes reagents and standards power cooling water argon gas quartz torches 	Image: state of the state
 reagents and standards pump tubing power cooling water 	 sampling and skimmer cones reagents and standards pump tubing power cooling water 	Investment

Summary

Overall Technique Selection Summary

For ultimate throughput, choose ICP-OES and ICP-MS

► If ultimate DLs, choose ICP-MS

For strictly regulated industries/applications such as USEPA, please check that data is accepted

Cadmium is a heavy metal used in a variety of applications, such as steel plating, as a pigment in plastics and glasses, and in the production of batteries. These industrial activities are the main route through which cadmium is released into the environment where it accumulates in water and soil, and subsequently plants, animals and fish through uptake and ingestion. One of the main routes of human exposure to cadmium is therefore through the ingestion of foodstuffs.

- Typical maximum levels of cadmium in foodstuffs are currently between 0.05 0.2 mg/kg wet weight.
- The main ingredients in chocolate consist of cocoa, milk and fats, each of which is a potential source of cadmium.

1 mg/l cadmium sub-standard was prepared in deionised water for spiking of samples prior to digestion

Analysis of Cadmium in Chocolate by GFAAS

- ۲ 10 µg/l sub-standard was made up in 7% nitric acid and 1% hydrogen peroxide to matrix match to the digested samples.
- Blank and diluent were also prepared at 7% nitric acid and 1% hydrogen peroxide. ۲
- A matrix modifier : 2 g/l of ammonium nitrate ۲

Furnace Method

Cadmium was analyzed at 228.8 nm and Zeeman background correction ۲

Phase	Temperature / °C	Time / s	Ramp / °C/s
Dry	110	30	10
Ash	400	20	150
Atomize	1300	3	0
Clean	2500	3	0

Thermo Scientific iCE3500 AAS

Sample	Measured Concentration µg/l	Concentration in original sample mg/kg	Calculated Recovery Spiked / %
USA Origin, Milk	0.030	0.010	
USA Origin, Milk, Spiked	5.095		101
UK Origin, Milk	0.038	0.012	
UK Origin, Milk, Spiked	5.182		103
USA Origin, Dark	0.124	0.042	
USA Origin, Dark, Spiked	4.761		93

Results for the analysis of cadmium in chocolate following analysis by GFAAS

China and India have seen a huge increase in the consumption of bottled water in the last decades

Chinese regulations:

GB 8537–2008 - Drinking natural mineral water

GB 17324–2003 - Hygienic standard of bottled

purified water for drinking

GB 5749–2006 - Standards for drinking water quality GB 3838–2002 - Environmental quality standard for

surface water

Indian regulations: IS 10500:2012 - Drinking Water IS 13428:2005 - Packaged natural mineral water

IS 14543:2004 - Packaged drinking water (other than packaged

natural mineral

EI	lement	GB 8537-2008	GB 17324-2003	GB 5749-2006	GB 3838-2002 (I) ¹	IS 10500:2012	IS 13428:2005	IS 14543:2004
Ars	senic	0.01	0.01	0.01	0.05	0.01	0.05	0.05
Cac	dmium	0.003	-	0.005	0.001	0.003	0.003	0.01
Chr	romium*	0.05	-	0.05	0.01	0.05	0.05	0.05
Cop	pper	1	0.01	1	0.01	0.05	1	0.05
Iron	n	-	-	0.3	0.3	0.3	-	0.1
Lea	ad	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Mei	rcury	0.001	-	0.001	0.00005	0.001	0.001	0.001
Nic	kel	0.02	-	0.02	0.02	0.02	0.02	0.02
Zind	с	0.2	-	1	0.05	5	5	5

Table 1. Maximum permissible levels in mg·kg-1.

มาตรฐานคุณภาพน้ำเพื่อบริโภค

	มาตรฐานแลิตภัณฑ์อุตสาหกรรมน้ำบริโกค					
			มาตร <u></u> ฐาน			
ຄຸດເລັກນດເະ	ดัชนิดุณภาพน้ำ	หน่วย	เกณฑ์กำหนดสูงสุด (Maximum Acceptable Concentration)	เกณฑ์อนุโลมสูงสุด ^a (Maximum Allowable Concentration)		
ทาง กายภาพ	1.ឥ (Colour)	ปลาตินัม-โคบอลต์ (Platinum-Cobalt)	5	15		
	2.รส (Taste)	-	ไม่เป็นที่รังเกียจ	ไม่เป็นที่รังเกียจ		
	3.กลิ่น (Odour)	-	ไม่เป็นที่รังเกียจ	ไม่เป็นที่รังเกียจ		
	4.ความขุ่น (Turbidity)	ชิลิกา สเกล ยูนิต (Silica scale unit)	5	20		
	5.ความเป็นกรด-ต่าง(pH)	-	6.5-8.5	9.2		
ทางเคมี	6.ปริมาณสารทั้งหมด (Total Solids)	มก./ล.	500	1,500		
	7.เหล็ก (Fe)	มก./ล.	0.5	1.0		
	8.มังกานีส (Mn)	มก./ล.	0.3	0.5		
	9.เหล็กและมังกานิส (Fe& Mn)	มก./ล.	0.5	1.0		
	10.ทองแดง (cu)	มก./ล.	1.0	1.5		
	11.สังกะสึ (Zn)	มก./ล.	5.0	15.0		
	12.คัลเซียม (Ca)	มก./ล.	75 ^b	200		
	13.แมกนีเซียม (Mg)	มก./ล.	50	150		
	14.ชัลเฟต (SO ₄)	มก./ล.	200	250 ^c		
	15.คลอไรต์ (CI)	มก./ล.	250	600		
	16.ฟลุออไรต์ (F)	มก./ล.	0.7	1.0		
	17.ไนเตรต (NO ₃)	มก./ล.	45	45		
	18.อัลคิลเบนชิลชัลโฟเนต (Alkylbenzyl Sulfonate,ABS)	มก./ล.	0.5	1.0		
	19.ฟิโนลิกชับสแตน ช(Phenolic substances as phenol)	มก./ล.	0.001	0.002		
สารเป็นพิษ	20.ปรอท (Hg)	มก./ล.	0.001	-		
	21.ตะกั่ว (Pb)	มก./ล.	0.05	-		
	22.อาร์เซนิก (As)	มก./ล.	0.05	-		
	23.ชิลิเนียม (Se)	มก./ล.	0.01	-		
	24.โครเมียม (Cr hexavalent)	มก./ล.	0.05	-		
	25.ไชยาไนด์ (CN)	มก./ล.	0.2	-		
	26.แคตเมียม (Cd)	มก./ล.	0.01	-		
	27.แบเรียม (Ba)	มก./ล.	1.0	-		

	มาตรฐานอุณภาพน้ำตื่มในภาชนะบรรจุที่ปิดสนิท					
คุณลักษณะ	ดัชนิดุณภาพน้ำ	หน่วย	ค่ามาตรฐาน (เกณฑ์อนุโลมสูงสุด)			
ทางกายภาพ	1.តិ (Colour)	ฮาเชนยุนิต(Hazen)	20			
	2.กลิ่น(Odour)	-	ไม่มีกลิ่น (ไม่รวมกลิ่นคลอรีน)			
	3.ความขุ่น(Turbidity)	ชิลิกาสเกลยูนิต (silica scale unit)	5			
	4.ค่าความเป็นกรด-ต่าง (pH)	-	6.5-8.5			
ทางเคมี	5.ปริมาณสารทั้งหมด(Total Soilds)	มก./ล.	500			
	6.ความกระด้างทั้งหมต(Total Hardness) (คำนวณเป็นแคลเชียมการ์บอเนต)	มก./ล.	100			
	7.สารหนู (As)	มก./ล.	0.05			
	8.แบเรียม (Ba)	มก./ล.	1.0			
	9.แคตเมียม (Cd)	มก./ล.	0.005			
	10.คลอไรต์ (Cl, คำนวณเป็นคลอริน)	มก./ล.	250			
	11.โครเมียม (Cr)	มก./ล.	0.05			
	12.ทองแดง (cu)	มก./ล.	1.0			
	13.เหล็ก (Fe)	มก./ล.	0.3			
	14.ตะกั่ว (Pb)	มก./ล.	0.05			
	15.แมงกานิส (Mn)	มก./ล.	0.05			
	16.ปรอท (Hg)	มก./ล.	0.002			
	17.ไนเตรต (NO3-N, คำนวณเป็นไนโตรเจน)	มก./ล.	4.0			
	18.ฟีนอล (Phenols)	มก./ล.	0.001			
	19.ชีลิเนียม (Se)	มก./ล.	0.01			
	20.เงิน (Ag)	มก./ล.	0.05			
	21.ชัลเฟต (SO ₄)	มก./ล.	250			
	22.สังกะสึ (Zn)	มก./ล.	5.0			
	23.ฟลุออไรด์ (F) (คำนวณเป็นฟลุออริน)	มก./ล.	1.5			
	24.อะลุมิเนียม	มก./ล.	0.2			
	25.เอบิเอส (Alkylbenzene Sulfonate)	มก./ล.	0.2			
	26.ไชยาไนด์	มก./ล.	0.1			

Thermo Scientific™ iCAP™ 7200 ICP-OES Duo with Qtegra™ Intelligent Scientific Data Solution™ (ISDS) Software

- Tap water sample from Dingpu river area, Shanghai
- Tap water sample from Jinqiao lake area, Shanghai
- Waterman (packaged drinking water)
- Nestle (natural mineral water)
- Evian (natural mineral water)
- Samples did not require any pre-treatment
- Samples were analyzed directly after preservation in 0.5% AR grade nitric acid (HNO₃)

Parameter	Setting
Pump Tubing	Sample Tygon [®] orange/white Drain Tygon [®] white/white
Pump Speed	45 rpm
Nebulizer	Glass concentric
Nebulizer Gas Flow	0.19 MPa
Spray Chamber	Glass cyclonic
Auxiliary Gas Flow	0.5 L·min ⁻¹
Coolant Gas Flow	12 L-min ⁻¹
Center Tube	2 mm
RF Power	1150 W
Plasma View	Axial
Exposure Time	5 s

Spec

Element and wavelength (nm)	MDL	Dingpu River	Jinquiao Lake	Waterman	Nestle	Evian
As 193.759	2.14	<dl< th=""><th>1.27</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	1.27	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Cd 214.438	0.07	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Cr 205.560	0.21	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Cu 324.754	0.39	<dl< th=""><th>1.52</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	1.52	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Fe 259.940	0.25	1.14	1.53	0.41	0.78	0.74
Hg 194.227	0.66	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Ni 231.604	0.36	1.05	0.57	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Pb 220.353	1.06	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Zn 213.856	0.19	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>

Averaged results and method detection limits in μ g·kg-1.

Stability of the 10 μ g·kg-1 QC check over 4 hours

QC stability at 10ppb over 4 hours

QC Sample Number

Spec

Which technique would you use for the analysis of Lead in blood?? They do not have detection limits but would like to detect as low as possible

Dust, Paint, Soil, Industrial, Water, Toy, Food

- The United States Centers for Disease Control and Prevention (CDC) states that Blood Lead Levels (BLL) >70 µg/dL (700 ng/mL) can cause serious health effects.
- BLL as low as 10 µg/dL (100 ng/mL) are associated with cognitive development, growth, and behavioral issues in children between the ages of 1-5 years.

 As, Cd, Cr, Pb, Hg and Se in whole blood and Certified reference materials (Seronorm Trace Elements Whole Blood)

* Tetramethylammonium hydroxide (TMAH, 1.5%), Hydrochloric acid (HCl, 1.5%), Ammonium Pyrrolidine dithiocarbamate (APDC), Triton-X and 0.1 μg/L of ¹⁰³Rh (Internal standard)

Possibl	e interferences for	82Se	
Symbol	Mass	Abundance	
82Kr	81.9135	11.600	
1H + 81Br	81.9241	49.303	- 1
16O + 1H + 65Cu	81.9305	30.752	- 1
16O + 66Zn	81.9209	27.834	- 1
12C + 70Ge	81.9242	20.275	- 1
14N + 68Zn	81.9279	18.731	- 1
13C + 69Ga	81.9289	0.661	- 1
40Ar + 42Ca	81.9210	0.644	- 1
12C + 70Zn	81.9253	0.593	- 1
16O + 3H + 63Cu	81.9405	0.000	- 1
17O + 2H + 63Cu	81.9428	0.000	- 1
18O + 1H + 63Cu	81.9366	0.138	- 1
164Dy++	81.9646	28.200	- 1
163Dv++	81 4644	24 900	
		C	ose

 82 Se is chosen based on less possible argon based interferences compare to 80 Se (40 Ar₂⁺).

Selecte	ed analyte is	otopes	Internal standard isotope
⁷⁵ As	¹¹⁴ Cd	⁸² Se	¹⁰³ Rh
⁵² Cr	²⁰² Hg		
⁶³ Cu	²⁰⁸ Pb		

¹¹⁴Cd is chosen based on it abundance.

	Symbol	Mass	Abundance	Interferences
	106Cd	105.9065	1.25	106Pd(27.330%); 16
	108Cd	107.9042	0.89	108Pd(26.460%); 1H .
	110Cd	109.9030	12.49	110Pd(11.720%); 16
	111Cd	110.9042	12.80	12C + 99Tc(0.000%);
	112Cd	111.9028	24.13	112Sn(0.970%); 40Ar
	113Cd	112.9044	12.22	113ln(4.300%); 14N +
•	114Cd	113.9034	28.73	114Sn(0.650%); 40Ar
	116Cd	115.9048	7.49	116Sn(14.530%); 16

Symbol	Mass	Abundance	
114Sn	113.9028	0.650	
40Ar + 74Ge	113.8836	36.354	
12C + 102Ru	113.9043	31.252	
16O + 98Mo	113.9003	24.073	
14N + 100Ru	113.9073	12.554	
1H + 113Cd	113.9122	12.218	
🔒 14N + 100Mo	113.9105	9.595	
🔒 16O + 1H + 97Mo	113.9088	9.526	
👔 1H + 113ln	113.9119	4.299	
👔 16O + 98Ru	113.9002	1.876	
40Ar + 74Se	113.8849	0.896	
12C + 102Pd	113.9056	1.009	
15N + 99Tc	113.9064	0.000	
	113 9089	0 187	

How to remove Polyatomic Interference? Collision Cell Technology (CCT)

A fully quantitative research method for the analysis of Lead in whole blood using ICPMS

Spec

spec

Thank you for your attention!!!

Spec

SciSpec Line Account

เพื่อเป็นการเพิ่มข่องทางในการติดต่อสื่อสารระหว่างกัน ให้สะดวกและรวดเร็วยิ่งขึ้น Sci<mark>Spec</mark> ใต้เลือกใช้ Line@ Application เพื่อให้ลูกค้าทุกท่าน สามารถติดต่อกับ บริษัทฯ ได้ง่ายยิ่งขึ้น เพียงกด "Add friend" หรือ "เพิ่มเพื่อน" ใน application ของท่าน ทิมพ์ @scispec เพียงเท่านี้ท่านก็สามารถ แจ้งความต้องการต่างๆ ผ่าน Chat box เข้า มาที่ บริษัทฯ ได้เลย โดยจะมีพนักงานทั้งฝ่าย sale service specialist และ back office คอยให้บริการท่านทุกเวลา

หรือท่านสามารถ scan QR code ที่รูปด้านข้าง หรือ click ปุ้ม "Add friends" ได้เลย!!! นอกจากนั้บริษัทฯ จะทำการส่ง ข่าวสารและ Promotion ดีๆ ไปถึงท่านอิกมากมาย

👳 Add Friends

