

Basic and Application Inductively coupled plasma mass spectrometry (ICPMS)

What is ICP MS

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry which is capable of detecting metals and several non-metals at concentrations as low as one part in 10¹² (ppt). This is achieved by ionizing the sample with inductively coupled plasma and then using a mass spectrometer to separate and quantify those ions.

ICP-MS Instrumental

ICP-MS Instrumental

ICP-MS Instrumental

ANALYTE	POTENTIAL INTERFERENT	PRECURSORS
⁴⁵ Sc	¹³ C ¹⁶ O ₂ , ¹² C ¹⁶ O ₂ H, ⁴⁴ CaH, ³² S ¹² CH, ³² S ¹³ C, ³³ S ¹² C	H, C, O,S, Ca
⁴⁷ Ti	³¹ P ¹⁶ O, ⁴⁶ CaH, ³⁵ Cl ¹² C, ³² S ¹⁴ NH, ³³ S ¹⁴ N	H, C, N, O, P, S, Cl, Ca
⁴⁹ Ti	³¹ P ¹⁸ O, ⁴⁸ CaH, ³⁵ Cl ¹⁴ N, ³⁷ Cl ¹² C, ³² S ¹⁶ OH, ³³ S ¹⁶ O	H, C, N, O, P, S, Cl, Ca
⁵⁰ Ti	³⁴ S ¹⁶ O, ³² S ¹⁸ O, ³⁵ Cl ¹⁴ NH, ³⁷ Cl ¹² CH	H, C, N, O, S, Cl
⁵¹ V	³⁵ Cl ¹⁶ O, ³⁷ Cl ¹⁴ N, ³⁴ S ¹⁶ OH	H, O, N, S, CI
⁵² Cr	³⁶ Ar ¹⁶ O, ⁴⁰ Ar ¹² C, ³⁵ Cl ¹⁶ OH, ³⁷ Cl ¹⁴ NH, ³⁴ S ¹⁸ O	H, C, O, N, S, Cl, Ar
⁵⁵ Mn	³⁷ Cl ¹⁸ O, ²³ Na ³² S, ²³ Na ³¹ PH	H, O, Na, P, S, Cl, Ar
⁵⁶ Fe	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O	O, Ar, Ca
⁵⁷ Fe	⁴⁰ Ar ¹⁶ OH, ⁴⁰ Ca ¹⁶ OH	H, O, Ar, Ca
⁵⁸ Ni	⁴⁰ Ar ¹⁸ O, ⁴⁰ Ca ¹⁸ O, ²³ Na ³⁵ CI	O, Na, Cl, Ar, Ca
⁵⁹ Co	⁴⁰ Ar ¹⁸ OH, ⁴³ Ca ¹⁶ O, ²³ Na ³⁵ CIH	H, O, Na, Cl, Ar, Ca
⁶⁰ Ni	⁴⁴ Ca ¹⁶ O, ²³ Na ³⁷ Cl	O, Na, Cl, Ca
⁶¹ Ni	⁴⁴ Ca ¹⁶ OH, ³⁸ Ar ²³ Na, ²³ Na ³⁷ CIH	H, O, Na, Cl, Ca
⁶³ Cu	⁴⁰ Ar ²³ Na, ¹² C ¹⁶ O ³⁵ Cl, ¹² C ¹⁴ N ³⁷ Cl, ³¹ P ³² S, ³¹ P ¹⁶ O ₂	C, N, O, Na, P, S, Cl
⁶⁴ Zn	³² S ¹⁶ O2, ³² S ₂ , ³⁶ Ar ¹² C ¹⁶ O, ³⁸ Ar ¹² C ¹⁴ N, ⁴⁸ Ca ¹⁶ O	C, N, O, S, Ar, Ca
⁶⁵ Cu	³² S ¹⁶ O2H, ³² S ₂ H, ¹⁴ N ¹⁶ O ³⁵ CI, ⁴⁸ Ca ¹⁶ OH	H, N, O, S, Cl, Ca
⁶⁶ Zn	³⁴ S ¹⁶ O, ³² S ³⁴ S, ³³ S, ⁴⁸ C, ¹⁸ O	O, C, S
⁶⁹ Ga	³² S ¹⁸ O ₂ H, ³⁴ S ₂ H, ³⁷ Cl ¹⁶ O ₂	H, O, S, CI
⁷⁰ Zn	³⁴ S ¹⁸ O ₂ , ³⁵ Cl ₂	O, S, CI
⁷⁵ As	⁴⁰ Ar ³⁴ SH, ⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl, ³⁷ Cl ₂ H	H, S, Cl, Ca, Ae
77Se	⁴⁰ Ar ³⁷ Cl, ⁴⁰ Ca ³⁷ Cl	Cl, Ca, Ar
78Se	⁴⁰ Ar ³⁸ Ar	Ar
80Se	⁴⁰ Ar ₂ , ⁴⁰ Ca ₂ , ⁴⁰ Ar ⁴⁰ Ca, ³² S ₂ ¹⁶ O, ³² S ¹⁶ O ₃	O, S, Ar, Ca

⁴⁰Ar³⁵Cl

⁴⁰Ar¹⁶O

⁴⁰Ca¹⁶O

Atmospheric pressure

Qcell Collision/Reaction Cell (CRC)

- Flatapole technology for improved transmission
- Low mass cut off filters out unwanted precursor ions
- Single mode interference removal with He
- He KED filters out unwanted polyatomic interferences
- Small CRC volume for fast gas exchange
- Flexibility to work with reactive gases, such as mixtures of
 - $O_2^{}$ 7% dilute $H_2^{}$ or 1% $NH_3^{}$
- Non-consumable, zero-maintenance

How to remove Polyatomic Interference? He KED mode

Comprehensive He KED filters out unwanted polyatomic analyte Interference interferences ⁷⁵As⁺ Quadrupole set to Removal filter out exact mass of target analyte High transmission enables analysis of even low e.g. 75As+ mass analytes in He KED mode Quadrupole isolates ions Single measurement mode for all analytes in wanted for analytical method measurement ArCl⁺ Ca(OH)₂H⁺ He KED filters out No gas switching makes method more productive unwanted polyatomic and simple interferences, based on difference in cross-sectional size of the analyte and No change of measurement mode effectively polyatomic Complex eliminates method development matrix Unique Flatapole Design ⁷⁵As+ 40Ar35Cl + Ca(OH)₂H + Your Scientific Specialist How to remove polyatomic interference? He KED mode

Collisional retardation / energy filtering

Spec

Simplicity and Productivity – Low mass cut-off

QCell flatapole dynamically applies Low Mass Cut Off (LCMO) relative to target analyte

Anal	LMCO	Interferences	Precursors
⁵¹ V	35	³⁵ Cl ¹⁶ O, ³⁷ Cl ¹⁴ N, ³⁴ S ¹⁶ OH	H, N, O, S, Cl
⁵⁶ Fe	39	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O	O, Ar, Ca
⁶³ Cu	45	⁴⁰ Ar ²³ Na, ¹² C ¹⁶ O ³⁵ Cl, ³¹ P ³² S	C, N, O, Na, P, S, Cl, Ar
⁷⁵ As	47	⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl, ⁴⁰ Ar ³⁴ SH, ³⁷ Cl ₂ H	H, S, Cl, Ca, Ar

Unique Flatapole Design

Simplicity and Productivity – Low mass cut-off

QCell flatapole dynamically applies Low Mass Cut Off (LCMO) relative to target analyte

Anal	LMCO	Interferences	Precursors
⁵¹ V	35	³⁵ Cl ¹⁶ O, ³⁷ Cl ¹⁴ N, ³⁴ S ¹⁶ OH	H, N, O, S, Cl
⁵⁶ Fe	39	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O	O, Ar, Ca
⁶³ Cu	45	⁴⁰ Ar ²³ Na, ¹² C ¹⁶ O ³⁵ Cl, ³¹ P ³² S	C, N, O, Na, P, S, Cl, Ar
⁷⁵ As	47	⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl, ⁴⁰ Ar ³⁴ SH, ³⁷ Cl ₂ H	H, S, Cl, Ca, Ar

All unwanted precursors that contribute to intereferences are eliminated

Unique Flatapole Design

Calibration curve for $^{75}\!\text{As}$ in a solution containing 0.5% HCI

STD mode: Polyatomic interference leads to poor IDL and elevated BEC

KED mode: Polyatomic interference removed IDL below 5 ppt

STD (no gas), KED and CCT mode

0.000

0.000

-1.0000

-2.00

Same platform – there are more differences than you think!

Thermo Scientific iCAP TQ ICP-MS

Mixture of analytes and

interferences

Mass Shift Interference

Environmental Analysis – As, Se

Clinical Research - Ti

Advanced Applications

Speciation Analysis Laser Ablation - Imaging

Metallurgy

- Isopropyl alcohol (IPA) is used to solvent clean wafers during production in the semiconductor industry
- IPA has been considered a difficult matrix to analyze directly by ICP-MS
 - high volatility
 - low viscosity
 - high carbon content
- Kinetic energy discrimination (KED) can remove carbon based interferences from the sample matrix and argon based interferences from the ICP

Authors Tornoko Vincent¹, Vicki Wu², Julian D. Wills¹, Lothar Rottmann¹, ¹Thermo Fisher Scientific, Germany, ²Joy Allied Technology, Taiwan.

Keywords Cold plasma, ICAP RO, ICP-MS, IPA, organics, semiconductor

Goal To determine ultratrace metal concentrations in semiconductor grade isopropyl abchol (IPA). Use cold plasma to reduce background equivalent concentrations (IEC) and detection limits (LOD) to demonstrate reproducible ultratrace ing L¹) measurements. Demonstrate the reliable switching between hot and cold plasma within a single measurement to maximize sample throughput. Introduction

Isopropyl alcohol (IPA) is used to solvent clean waters during production in the semiconductor industry. As IPA comes into direct contact with water surfaces, it must be controlled for its trace metal purity. Because of its high elemental sensitivity, ICP-MS is widely used in quality control analyses of materials used in the semiconductor industry. A direct ICP-MS technique for the analysis of IPA would provide a useful control for ultratrace ing L*] levels of markets.

IPA has historically been considered a difficult matrix to analyze directly by ICPAMS due to its high volatility, low viscosity and high actron content. In this study instead of using kinetic energy discrimination (KED) to remove carbon based interferences from the sample matrix and argon based interferences from the ICP, cold plasma was employed. With this approach the ICP ion source is run at a significantly lower power, effectively suppressing the ionization of argon and actrobic match the eliminating interfering polyatomic species that would otherwise interfere with target analyte ions. This approach is particularly effective for the alast metals and permits their direct analysis at the ultratrace concentration levels required by the semiconductor industry.

Thermo Fisher

Parameter	Value	
Hot Plasma Power	1350 W	
Cold Plasma Power	800 W	
Spraychamber	Quartz cyclonic	
Peltier Temperature	-10 °C	
Hot Plasma Nebulizer Gas Flow	0.7 L·min ⁻¹	
Cold Plasma Nebulizer Gas Flow	1.0 L·min ⁻¹	
Oxygen Gas Flow	50 mL·min ⁻¹	
Nebulizer	MicroFlow PFA-100 (self-aspirating)	
Injector	1.0 mm I.D., quartz	
Interface	Platinum sampler and high	
Interface	sensitivity platinum skimmer	
Dwell Time	100 ms per peak, 10 sweeps	

	Identifier	Dwell time (s)	Measurement mode	Channels	Spacing (u)
	7Li (Cold Plasma)	0.1	Cold Plasma	1	0.1
	23Na (Cold Plasma)	0.1	Cold Plasma	1	0.1
	24Mg (Cold Plasma)	0.1	Cold Plasma	1	0.1
	40Ca (Cold Plasma)	0.1	Cold Plasma	1	0.1
	39K (Cold Plasma)	0.1	Cold Plasma	1	0.1
	27AI (Cold Plasma)	0.1	Cold Plasma	1	0.1
•	74Ge (Hot Plasma)	0.1	Hot Plasma	1	0.1
		0.1	Tiot Fidania		
_	nced Parameters	0.1	Hot Hasina		0.1
Adva					
Adva Nun	nced Parameters aber of sweeps:	10	TIOL FIGHTIN		
Adva Nun	nced Parameters	10 🗬			
Adva Nun	nced Parameters aber of sweeps:	10			
Adva Nun	nced Parameters aber of sweeps:	10 🗬			
Adva Nun	nced Parameters aber of sweeps:	10 🗬	TIGETIGSTIG		

- Standard concentration : 20, 50, 100 and 200 ng/L
- IPA sample was spiked with 100 ng/L
- Measurement of 26 elements at ultratrace concentrations in IPA was achieved in less than 5 minutes. (sample uptake, analysis and washout as well as the switching time between hot and cold plasma within each measurement)

- Low ionization potential (IP) elements : Li, Na, Mg, K, Ca, Al as well as first row transition metals; Cr, Fe are measured with low backgrounds and high sensitivities in cold plasma
- Higher IP elements are analyzed in hot plasma

Calibration Curve

Calibration data

Mg at m/z 24 in IPA under hot plasma conditions is complicated by a carbon dimer species (12C₂)
Cold plasma can remove interference at m/z 24 and provide the sub ng/L detection limit (LOD) and

background equivalent concentration (BEC)

Figure 3. Cold plasma calibration curves with points 20, 50, 100 and 200 (ng·L⁻¹).

52Cr 3000 2500 F 2000 1500 1000 500 50 100 150 200 Concentration (ppt) 6x2+8"x+x 154.854 5.505 50. D.1.0P 10.055 ppt

PM 2005-15

rour sciencine specialise

	Analysis Mode	BEC (ng·L-1)	LoD (ng·L⁻¹)	Recovery (%)
7Li	Cold	0.031	0.007	99%
¹¹ B	Hot	107	29	89%
²³ Na	Cold	10	0.8	101%
²⁴ Mg	Cold	0.78	0.54	101%
²⁷ AI	Cold	0.29	0.34	97%
³⁹ K	Cold	14	0.31	97%
⁴⁰ Ca	Cold	7.4	3.1	118%
⁵¹ V	Hot	4.0	1.4	100%
⁵² Cr	Cold	11	3.9	97%
⁵⁵ Mn	Cold	7.3	1.6	97%
⁵⁶ Fe	Cold	3.7	< 0.001	98%
⁵⁸ Ni	Cold	0.40	0.52	97%
⁵⁹ Co	Cold	1.9	1.2	103%
⁶³ Cu	Cold	5.0	2.4	106%
⁶⁶ Zn	Cold	6.5	3.7	109%
⁷⁴ Ge	Hot	5.1	3.9	90%
⁷⁵ As	Hot	7.6	11	107%
¹⁰⁷ Ag	Cold	0.41	0.42	116%
¹¹¹ Cd	Hot	0.26	0.39	104%
¹¹⁵ In	Cold	0.01	0.04	100%
¹²⁰ Sn	Hot	0.10	0.001	103%
¹³⁸ Ba	Hot	0.014	0.014	102%
¹⁹⁷ Au	Hot	1.0	1.4	86%
²⁰⁵ TI	Cold	0.07	0.22	100%
²⁰⁸ Pb	Cold	0.13	0.39	99%
²⁰⁹ Bi	Cold	0.001	0.001	98%

 Fast, reliable, in measurement switching between hot and cold plasma even for volatile organic solvents

Thermo Scientific iCAP RQ ICP-MS.

App Note 43285 : As and Se in environmental samples

- Many different chemical forms (species) are known that strongly differ in toxicity and bioavailability
- Plants such as rice are well known for high accumulation of As from soils
- Knowledge of Se content in soil may prevent Se deficiency in both human and animal populations

- Calibration standards of arsenic and selenium : Concentrations of 0.2, 0.5, 1, 2 and 5 μg/L
- 1 ppm of Dy, Gd, Nd, Sm and Tb added
- 35 mg of a marine sediment sample, collected from the deep Pacific Ocean + 50 mg of the andesite reference standard AGV-1 and treated in closed PTFE vessels with concentrated HNO₃ overnight to oxidize any organic matter (if present).
- Concentrated HF (1.5 mL) and $HCIO_4$ (1.5 mL) added
- Heated in a hot block for 12 h at 180 °C.
- After digestion, the acids were evaporated on a hot plate at 180 °C to near dryness.
- The residues were re-dissolved, fumed off three times with 6N HCI to near dryness and finally taken up in 10 mL 1N HNO₃
- Prior to analysis, both samples were further 1:10 diluted with 1% HNO₃/2% MeOH
- Lutetium was added at a concentration of 1 µg·L-1 as an internal standard
- The use of methanol is important in the analysis of arsenic and selenium due to the effect of carbon enhancement in the plasma which increases the ionization of both elements.

For different measurement modes were evaluated:

SQ-STD - Single quadrupole mode with no collision/reaction cell (CRC) gas.

 $\ensuremath{\mathsf{SQ-H}}_2$ - Single quadrupole mode with CRC pressurized with pure hydrogen as reaction gas

SQ-KED - Single quadrupole mode with CRC pressurized with helium as a collision gas and KED applied.

 $TQ-O_2$ Triple quadrupole mode with CRC pressurized with oxygen as a reaction gas, Q1 set to analyte mass (M+) and Q3 set to product ion mass (MO+)

Interferences on As and Se: Ar₂, ArCI – easy to remove using He KED but if REE are present....

Interferences on As and Se: Ar₂, ArCI – easy to remove using He KED but if REE are present....

Mass shift reactions that move the analyte of interest to a different m/z

- Control ions entering the cell using Q1
- Use O₂ to efficiently convert As and Se to AsO and SeO in Q2 the REE⁺⁺ don't react
- Selectively detect AsO and SeO free from REE⁺⁺ interference, using Q3

Interference removal capability

- Increased BECs observed for all SQ-modes due to unresolved doubly charged REE interferences
- Hydrogen is suitable for removing Ar based polyatomics, but is not capable of fully removing REE²⁺ interferences
- TQ-O₂ mode shows dramatically lower BEC values for both As and Se

Sample analysis results

AGV-1	Content in original sample (µg⋅g⁻¹)	Certified content (µg·g⁻¹)	
⁷⁵ As	0.892	0.88	
⁷⁸ Se	< LOQ	-	
Deep Sea Sediment			
⁷⁵ As	1.303	-	
⁷⁸ Se	0.109	-	

Spike recovery in REE matrix solution

Spike recovery results in samples (1 ppb As and Se)

Analyte	AGV-1	Sediment
Arsenic	94.6 %	97.6 %
Selenium	93.4 %	97.6 %

Focus on the development of a robust method for the analysis of titanium and other trace elements in human serum reference materials using TQ ICP-MS.

thermo scier	ntific	
		TECHNICAL NOTE 43283

Total elemental analysis in clinical research using the Thermo Scientific iCAP TQ ICP-MS

Authors

analysis, urine

Tomoko Vincent, Applications Specialist Thermo Fisher Scientific, Bremen, Germany

Keywords Clinical research, isobaric interferences, serum, titanium, trace elemental

Introduction

Trace element analysis of biological samples provides significant information to support clinical research and forensic toxicology. An interesting example of trace elemental analysis for clinical research purposes is exploring the degradation of titanium based orthopedic and dental implants in humans. Following recent research on the possible carcinogenic effects of titanium dioxide the fate of titanium in the human body thas become a growing area of clinical research focus. To support this there is a need for the development of robust analytical methods for the identification and quantification of titanium in a range of samples such as human body fluids and organs.

However, the development of such a method is challenging due to the low concentration of titanium in these types of samples and the potential isobaric interferences which single quadrupole ICP-MS cannot remove.

Advancements in ICP-MS technology have led to the development of triple quadrupole (TO) ICP-MS instruments, which have the required sensitivity as well as the capability to resolve isobaric interferences resulting from polyatomic and isotopic species.

Sample preparation

- Certified reference materials (Seronorm[™] Trace Elements in Serum L-1 and L-2 and volunteered human urine
- Sample were diluted 10 fold in 0.5% nitric acid and 2% tetramethylammotnium hydroxide (TMAH) and ultra-pure water
- Calibration blank, a series of standards and a Quality Control (QC) were prepared using the same procedure
- All samples and standards were spiked with an internal standard mix (10 µg/L Ge, Y, Rh, Te and Bi)

					Unit: mg·L ⁻¹
	Major STD1	Major STD2	Major STD3	Major STD4	QC CCVs
Ca	5	10	25	50	10
Fe	0.1	0.2	0.5	1	0.2
Mg	5	10	25	50	10
Ρ	5	10	25	50	10
K	5	10	25	50	10
S	50	250	500	1000	100
Na	50	100	250	500	100

Unit: µg·L-1

	Office				onic pg L
	Minor STD1	Minor STD2	Minor STD3	Minor STD4	QC CCVs
Sb	0.5	1	2.5	5	1
As	0.1	0.2	0.5	1	0.2
Ba	5	10	25	50	10
Cd	0.1	0.2	0.5	1	0.2
В	5	10	25	50	10
1	5	10	25	50	10
Pb	0.1	0.2	0.5	1	0.2
Li	500	1000	2500	5000	1000
Мо	0.1	0.2	0.5	1	0.2
Rb	0.5	1	2.5	5	1
Sr	5	10	25	50	10
Ti	0.5	1	2.5	5	1
U	0.005	0.01	0.025	0.05	0.01
V	0.1	0.2	0.5	1	0.2
Zn	50	100	250	500	100
Se	0.1	0.2	0.5	1	0.2
AI	50	100	250	500	100
Cr	0.5	1	2.5	5	1
Mn	5	10	25	50	10
Ni	5	10	25	50	10
Co	0.1	0.2	0.5	1	0.2

	Single Quadrupole ICP-MS		Triple Quadrupole ICP-MS	
	Ti SQ-KED, μg·L ⁻¹	Ti SQ-NH₃, μg·L⁻¹	Ti TQ-NH ₃ , μg·L ⁻¹	Ti Reported Value, μg·L ⁻¹
Serum L-1	167	1800	6.64	6.8
Serum L-2	262	1850	6.38	6.8

	Single Quadr	upole ICP-MS	Triple Quadrupole ICP-MS						
	Ti SQ-KED, μg·L⁻¹	Ti SQ-NH ₃ , μg·L ⁻¹	Ti TQ-NH ₃ , μg·L ⁻¹	Ti Reported Value, μg⋅L ⁻¹					
Serum L-1	167	1800	6.64	6.8					
Serum L-2	262	1850	6.38	6.8					
False positiv	ve results due to	Only by using triple quad							
unresolved	isobaric ⁴⁸ Cd	technology ca	technology can accurate results for						
Interference	9!	Ti be obtained	Ti be obtained!						

- Excellent agreement with certified value obtained for Ti
- Attainable detection sensitivity allowed to detect low concentrations of Ti in the prepared sample solution

	Single Quadr	upole ICP-MS	Triple Quadrupole ICP-MS							
_										
	Ti SQ-KED, μg·L⁻¹	Ti SQ-NH₃, μg·L⁻¹	Ti TQ-NH ₃ , μg·L ⁻¹	Ti Reported Value, μg⋅L ^{.1}						
Serum L-1	167	1800	6.64	6.8						
Serum L-2	262	1850	6.38	6.8						
False positiv	ve results due to	Only by using	Only by using triple quad							
unresolved	isobaric ⁴⁸ Ca	technology ca	technology can accurate results for							
Interference	9!	Ti be obtained	Ti be obtained!							

Background signal on ${}^{48}\text{Ti}{}^{14}\text{N}_4\text{H}_{10}$ for a solution containing 10 mg·L⁻¹ of Cd

This would be a problem using single quadrupole instruments with NH_3 !

- Excellent agreement to elements
- Full multi-elemental analysis

run

			Seru	erum L-1	S	erum L-2	Urine Measured	
	LOD	MDL	Measured	Reference or reported value	Measured	Reference or reported value		
Na*	0.0027	0.027	2743	2330-3504	3255	2820-4241	2977	
Mg*	0.0001	0.0010	21.0	13.4-20.1	39.7	27.1-40.7	85.6	
P*	0.0008	0.08	52.3	43.3-65.1	120	88-132	710	
S*	0.145	1.3800	1100	1008	1495	1335	476	
K*	0.0021	0.02	150	101-153	260	176-265	1946	
Ca*	0.002	0.0200	90.1	69-104	124	95-143	99.8	
Fe*	0.00002	0.00023	1.64	1.17-1.77	2.18	1.72-2.58	0.005	
Li	1.13	11.2920	5778	4202-6320	10806	7739-11639	22.4	
В	0.67	6.746	70.1	79.4	87	82.1	1548	
AI	0.20	1.9670	54.2	25.2-75.7	122	96-144	13.7	
V	0.002	0.022	1.04	1.10	1.26	1.10	0.229	
Cr	0.008	0.0800	1.70	1.30-3.05	5.20	4.00-7.50	0.838	
Mn	0.008	0.084	10.7	7.9-11.9	14.2	11.6-17.4	0.914	
Co	0.0001	0.0010	1.38	0.67-1.57	2.16	2.13-3.97	0.027	
Ni	0.006	0.055	6.26	3.38-7.9	9.41	7.9-11.9	1.45	
Zn	0.051	0.5130	1052	844-1269	1527	1404-1831	359	
As	0.002	0.018	0.383	0.400	0.374	0.380	1.31	
Se	0.010	0.1000	80.8	51-120	124	95-176	7.31	
Rb	0.004	0.035	4.20	4.40	8.70	8.70	812	
Sr	0.006	0.0570	95.7	95.0	106	110	89.2	
Мо	0.005	0.048	0.710	0.760	1.20	1.21	7.62	
Cd	0.001	0.0100	0.130	0.130	0.140	0.140	0.229	
Ti	0.002	0.02	6.64	6.80	6.38	6.80	0.151	
Sb	0.006	0.0600	11.6	10.4	16.1	15.0	0.040	
I.	0.022	0.219	75.5	71.8	69.9	60.9	82.8	
Ba	0.003	0.0300	172	190	133	139	2.09	
Pb	0.0007	0.007	0.370	0.400	0.666	0.660	0.446	
U	0.0001	0.0010	0.288	0.302	0.357	0.359	0.020	

Use as a good example of TQ multi-element data...

Hardware: IC and LC

IC is entirely metal free and thus ideally suited Control over hardware: Chromeleon plug-in for Qtegra

AN43255 Determination of Inorganic Arsenic in Rice using IC-ICP-MS

AN43099 IC-ICP-MS speciation analysis of As in apple juice using the Thermo Scientific iCAP Q ICP-MS AN43141 Total and speciation analysis of Mercury in contact lens solutions by ICP-MS

AN43227 Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and

Inductively Coupled Plasma Mass Spectrometry

AN43098 Speciation Analysis of Cr (III) and Cr (VI) in Drinking Waters Using Anion Exchange Chromatography Coupled to the Thermo Scientific iCAP Q ICP-MS

Data evaluation: tQuant

	7	5As (1)	Worki	ng Standar	d 1 PPB		
	7000						
	6000					(6) As+5	
	5000						
S	Ŧ			(4) 4+0			
V C	4000	(2) /	As+3	(-),~~~			
Intensity [cps]	3000 - (1) 41		(3) DMA			·····	
l	2000 ‡						
	1000						
	0		LA	L	A		
	-1000						
	0	100	200	300	400	500	60
				Time [s]			

- Compound specific calibration
- Peak integration algorithms

22			Sample Type				AsB [ppb]		DMA [ppb]		Asili (ppb)		AsC (ppb) 🗢	MMA (ppb) 4
iir i	1	3/14/2012 9:23:12 AM						N/A		N/A		0.001	-0.002	0.064
	2	3/14/2012 9:45:30 AM	STD											
	2	3/14/2012 9:45:30 AM	STD	STD		1	0.067 (0	072)	0.083 (0.	(080)	0.073 (0	(074)	0.068 (0.073)	0.073 (0.076)
i 📰	3	3/14/2012 10:07:42 AM	STD	STD	1		0.068 (0.	072)	0.086 (0.	080)	0.072 (0	074)	0.069 (0.073)	0.069 (0.076)
	4	3/14/2012 10:29:49 AM	ISTD	STD	2		0.399 (0	401)	0.445 (0	436)	0.420 (0	414)	0.400 (0.390)	0.126 (0.427)
	5	3/14/2012 10:51:55 AM	STD	STD	2		0.397 (0.	401)	0.441 (0.	436)	0.421 (0	(414)	0.400 (0.390)	0.454 (0.427)
	6	3/14/2012 11:14:03 AM	STD	STD	13	_	0.805 (0.	801)	0.876 (0.	8903	0.814 (0	823)	0.811 (0.806)	0.791 (0.842)
	7	3/14/2012 11:36:15 AM	STD	STD	13	-	0.819 (0.	801)	0.889 (0.	890)	0.825 (0	(823)	0.819 (0.808)	1.016 (0.842)
	8	3/14/2012 11:58:15 AM	STD	STO	14		1.617 (1.	618)	1.738 (1.	757)	1.649 (1	.658)	1.592 (1.608)	1.692 (1.683)
	9	3/14/2012 12:20:27 PM	STD	STD	4		1.614 (1.	518)	1.756 (1	757)	1.659 (1	658)	1.591 (1.608)	1.858 (1.683)
	10	3/14/2012 12:42:35 PM	STD	STD	15		3.280 (3.	282)	3.585 (3.	563)	3.405 (3	401)	3.243 (3.261)	3.351 (3.413)
	11	3/14/2012 1:04:35 PM	STD	STD	5		3.283 (3	282)	3.553 (3.	563)	3.401 (3	401)	3.290 (3.261)	3.389 (3.413)
87											- and		-	- AND
2	No.	Time	Sample Type	T RIK	Label	v	AsB [ppb]	-41	DMA (spb)	-u	Aalii (ppb)	40	AsC [ppb] 4	MMA (ppb) +=
	12	3/14/2012 1:26:48 PM				-		002				D.001	-0.002	0.064 N/A
	13	3/14/2012 1:49:01 PM 3/14/2012 2:11:07 PM			ple 1 Digest 1	-		001		144		1.014	-0.002	N/A N/A
					ple 1 Digest 1	_							-0.002	
	15	3/14/2012 2:33:07 PM 3/14/2012 2:55:22 PM			ple 2 Digest 2	-		000		149		1.049	-0.001	N/A N/A
	16	3/14/2012 3:17:19 PM			ple 2 Digest 2 ple 2 Digest 3	-		000		184		1.087	-0.002	N/A
-	1/	3/14/2012 3:17/19 PM 3/14/2012 3:39:34 PM			ple 2 Digest 3 ple 2 Digest 3	-		002		178		1.263	-0.002	N/A
	10	3/14/2012 3:33:34 PM 3/14/2012 4:01:35 PM		BLK		-		NA		N/A		0.001	-0.002	N/A
E		3/14/2012 4:01:35 PM 3/14/2012 4:23:45 PM		STD		-		946		023		0.962	-0.002	1.058
I				BLK		-		002		012		NIA	-0.002	1.056 N/A
	20	2/14/2012 4-45-52 044								1.012		1.158	-0.002	N/A
	20 21	3/14/2012 4:45:57 PM												
	20	3/14/2012 4:45:57 PM 3/14/2012 5:08:02 PM 3/14/2012 5:30:01 PM	UNKNOWN	Sarr	ple 2 Digest 1 ple 2 Digest 2	_		002		1160		1.128	-0.002	N/A

- Nanoparticle analysis by sp-ICP-MS becoming a part of routine measurements
- spICP-MS data handling and processing for consistent and accurate interpretation of the data; to give the right result
- Hardware: High Sensitivity Interface and 100 uL/min nebulizer
- Software: npQuant plug-in

 Acquire and evaluate data for nanoparticle size characterization

✓ Automated determination of key input parameters

 Statistical evaluation of each data set to judge data quality

Verification of the Calculation Procedures in the npQuant Evaluation Module for Qtegra Intelligent Scientific Data Solution Software

Daniel Kutscher, Shona McSheehy Ducos, Thermo Fisher Scientific, Bremen, Germany

Fully automated optimization for LA-ICP-MS

The high base sensitivity of the iCAP RQ enables routine analysis in He KED LA-ICP-MS.

Results for Cr and Fe isotopes in LA-ICP-MS analysis of artificial sapphire. Your Scientific Specialist

46

Thank You for Your Attention

Get Connected

www.scispec.co.th/

Follow Us

LINE

@scispec

https://www.facebook.com/scispec/

Questions?