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• It measures mass better
than any other technique

• It can give information
about chemical
structures.
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Sample
 The Original Representative Material Which Is To Be Analyzed Also

Called The Sample Matrix (Coffee)

Analyte(s)
• A Specific Compound(s) Contained In The Sample Which Is(Are) To Be

Separated And Analyzed (Caffeine)

Compound
• Pure Chemical Component In A Sample, Also Called An Analyte Or

Solute
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Stationary Phase
 The Chromatographic Packing Material Which Is Held In A Fixed

Position Usually Packed Into A Column, Or Coated Onto A Surface. It
Performs The Chemical Separation (Also Called The Packing Material, The
Chromatographic Material, Or The Adsorbent)

Mobile Phase
• Carrier Of The Sample, Moving It Through The Stationary

Chromatographic Packing Material. The Mobile Phase Can Be A Liquid
(HPLC), Or A Gas (GC)
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Continous stream of mobile phase

Column Stationary Phase

• The stationary phase retains analytes due to various interactions.
• When different chemical components pass through the column at

different rates they become separated in single zones.
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• Distance between the peak
centers of two peaks divided by
the average base width of the
peaks.

• From theory R > 1.50 indicates
baseline separation.

• In real life R ≥ 2 is usually the
goal (requested in regulated
environment).

• Much more resolution than 2
does not improve separation
quality but increases analysis
time.
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C TermC Term –– Mass TransferMass Transfer

Cs – term, describing the
contributions to peak
broadening in stationary phase
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Early 1970’s
10µm  Irregular micro-porous
1000-2500 psi (70-180 bar)
40,000 plates/meter

1980’s to present day
3.5 - 5µm  spherical micro-porous
1500-4000 psi (110-280 bar)
80,000 - 115,000 plates/meter
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• Accuracy is the degree of closeness of a measured quantity to its true value
 relevance for method transfer

• Precision is the degree of further measurements show the same results
(reproducibility)  deviation of repeated measurements

• The target analogy:

• A valid method or system is accurate and precise!
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accurate, but not precise
(random errors)

precise, but not accurate
(systematic error)

Neither accurate nor precise
(useless)
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“The basis in mass spectrometry (MS) is the production
of ions, that are subsequently separated or filtered
according to their mass-to-charge (m/z) ratio, and
detected. The resulting mass spectrum is a plot of the
(relative) abundance of the produced ions as a function
of the m/z ratio.”
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Select
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Detect

The lifetime of an ion from the point of formation
to detection is approximately 50 to 100 microseconds
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Ion Production

Ion OpticsIon Optics

Analyser (Quadrupole, Orbitrap)

Electron Multiplier

The lifetime of an ion from the point of formation
to detection is approximately 50 to 100 microseconds



Mass SpectrometryMass Spectrometry –– Block DiagramBlock Diagram

Liquid
Chromatography

Ionization

• ESI
• APCI
• APPI

Very important!
- Many columns
- Many solvent systems

Detector/
Data

Collection

Mass SpectrometryMass Spectrometry –– Block DiagramBlock Diagram

Ionization Mass Analyser
Detector/

Data
Collection

•Triple Quadrapoles
•Ion-Traps
•Orbitrap
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Solvent evaporation and
Ion desolvation

Electrospray Ionization (ESI)Electrospray Ionization (ESI)

Taylor Cone

Ion Transfer TubeSolvent evaporation and
Ion desolvation

Electrospray Ionization (ESI)Electrospray Ionization (ESI)
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• Gas phase ionization via corona discharge
• APCI is a three-step process:

1. High voltage (via corona needle) interacts with both the nitrogen carrier gas and the vaporized
HPLC solvent to produce primary ions:

O2 + e- → O2
+. + 2e-

N2 + e- → N2
+. + 2e-

2. Through a complex series of reactions primary ions react with solvent molecules forming
reagent ions, H3O+ and CH3OH2

+

3. Reagent ions react with analyte molecules forming (M+H)+ in positive ion mode or (M-H)- in
negative ion mode:

H3O+ + Analyte → (Analyte + H)+ + H2O
OH- + Analyte → (Analyte – H)- + H2O
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+. + 2e-

N2 + e- → N2
+. + 2e-

2. Through a complex series of reactions primary ions react with solvent molecules forming
reagent ions, H3O+ and CH3OH2

+

3. Reagent ions react with analyte molecules forming (M+H)+ in positive ion mode or (M-H)- in
negative ion mode:

H3O+ + Analyte → (Analyte + H)+ + H2O
OH- + Analyte → (Analyte – H)- + H2O



Atmospheric Pressure Chemical Ionization (APCI)Atmospheric Pressure Chemical Ionization (APCI)
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Atmospheric Pressure Chemical Ionization (APCI)Atmospheric Pressure Chemical Ionization (APCI)



Ion Max Source DesignIon Max Source Design -- APCI ProbeAPCI ProbeIon Max Source DesignIon Max Source Design -- APCI ProbeAPCI Probe



• It depends on the exact application.

• Increasing polarity and molecular weight and thermal instability
favors electrospray.

– Most drugs of abuse are highly polar and are easily
analyzed using electrospray.

– High molecular weight proteins also require electrospray

• Lower polarity and molecular weight favors APCI or APPI.
• Lower background, but compounds must be more

thermally stable.
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Mass SpectrometryMass Spectrometry –– Block DiagramBlock Diagram

Liquid
Chromatography
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Data
Collection

Mass SpectrometryMass Spectrometry –– Block DiagramBlock Diagram

Ionization Mass Analyser
Detector/

Data
Collection

•Triple Quadrapoles
•Ion-Traps
•Orbitrap
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• Operate under high vacuum (keeps ions from bumping into gas
molecules)

• Actually measure mass-to-charge ratio of ions (m/z)

• Key specifications are resolution, mass measurement
accuracy, and sensitivity.

• Several kinds exist: for ion traps, quadrupole, time-of-flight and
orbitrap are most used.
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Scan Modes

Scan Mode Q1 Q2

Full Scan Scanning Pass All

SIM Fixed m/z Pass All

Product Fixed m/z Pass All (+ CE)

SRM Fixed m/z Pass All (+ CE)

Neutral Loss Scanning Pass All (+ CE)

Precursor Scanning Pass All (+ CE)

Scan Modes

Q2 Q3 Purpose

Pass All Pass All MW Info.

Pass All Pass All Quantitation

Pass All (+ CE) Scanning Structural Info.

Pass All (+ CE) Fixed m/z Targeted
Quantitation

Pass All (+ CE) Scanning Analyte Screening

Pass All (+ CE) Fixed m/z Analyte Screening
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Full Scan Mode
Purpose: Survey scan of a chromatographic peak

Q1 Scanning RF Only Q3 RF Only

Full scan Q1:

Full Scan (QFull Scan (Q11 or Qor Q33))

Q1 RF Only RF Only Q3 Scanning

Full scan Q1:

Full Scan Q3:

Full Scan Mode
Purpose: Survey scan of a chromatographic peak

Q1 Scanning RF Only Q3 RF Only

Full Scan (QFull Scan (Q11 or Qor Q33))
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SIM Mode
Purpose: Quantitation on a specific m/z range of ions

Selected Ion MonitoringSelected Ion Monitoring –– SIMSIM

Q1 Set RF Only + CE Q3 RF Only

SIM Q1:

Q1 RF Only RF Only + CE Q3 Set

SIM Q1:

SIM Q3:

SIM Mode
Purpose: Quantitation on a specific m/z range of ions

Selected Ion MonitoringSelected Ion Monitoring –– SIMSIM

Q1 Set RF Only + CE Q3 RF Only

Q1 RF Only RF Only + CE Q3 Set



SIM is in essence a full scan acquisition on a relatively narrow mass
window (defined as center mass / scan width)

Fixed m/z Pass All

Selected Ion MonitoringSelected Ion Monitoring –– SIMSIM

 Advantages
 Targeted analyte monitoring
 High duty cycle

 Disadvantages
 Can suffer from interferences
 Not as sensitive or selective as SRM

SIM is in essence a full scan acquisition on a relatively narrow mass
window (defined as center mass / scan width)

Pass All Pass All

Selected Ion MonitoringSelected Ion Monitoring –– SIMSIM

 Disadvantages
 Can suffer from interferences
 Not as sensitive or selective as SRM
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Pass AllFixed m/z

Q1 Q2

Selected Reaction Monitoring (SRM)Selected Reaction Monitoring (SRM)

 Advantages
 Targeted analyte monitoring
 High duty cycle
 “Simultaneous” monitoring of

multiple transitions

Fixed m/zPass All

Q2 Q3

Selected Reaction Monitoring (SRM)Selected Reaction Monitoring (SRM)

 Advantages
 Targeted analyte monitoring
 High duty cycle
 “Simultaneous” monitoring of

multiple transitions

 Disadvantages
 No structural information



The Need for True MS/MSThe Need for True MS/MSThe Need for True MS/MSThe Need for True MS/MS
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Superior Selectivity

Free from sample matrix
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Why HighWhy High--throughput LCthroughput LC--MS/MS for Drugs of Abuse Analyses?MS/MS for Drugs of Abuse Analyses?Why HighWhy High--throughput LCthroughput LC--MS/MS for Drugs of Abuse Analyses?MS/MS for Drugs of Abuse Analyses?



Thermo Scientific Vanquish Horizon UHPLCThermo Scientific Vanquish Horizon UHPLCThermo Scientific Vanquish Horizon UHPLCThermo Scientific Vanquish Horizon UHPLC



Experimental DesignExperimental Design –– Liquid ChromatographyLiquid ChromatographyExperimental DesignExperimental Design –– Liquid ChromatographyLiquid Chromatography



Experimental DesignExperimental Design –– Mass SpectrometryMass SpectrometryExperimental DesignExperimental Design –– Mass SpectrometryMass Spectrometry
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Mass Analyzers ParametersMass Analyzers Parameters

•Nominal Mass

The mass of an ion with a given empirical formula calculated using the
integer mass numbers of the most abundant isotope of each element

Ex : M=249 C20H9
+ or C19H7N+ or C13H19N3O2

+

•Exact Mass

The mass of an ion with a given empirical formula calculated using the
exact mass of the most abundant isotope of each element

Ex : M=249 C20H9+ 249.0070
C19H7N+ 249.0580
C13H19N3O2+ 249.1479
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• Ability of a mass spectrometer to distinguish between ions of
nearly equal m/z ratios (isobars).

Mass Resolution: What is it?Mass Resolution: What is it?

• m - measured mass
• Δm - peak width measured at

50% peak intensity (Full Width
Half Maximum)

- or the mass difference
between two adjacent peaks
of equal intensity, in this case
pw @ 10% valley definition is
used.

• m - measured mass
• Δm - peak width measured at

50% peak intensity (Full Width
Half Maximum)

- or the mass difference
between two adjacent peaks
of equal intensity, in this case
pw @ 10% valley definition is
used.

• Ability of a mass spectrometer to distinguish between ions of
nearly equal m/z ratios (isobars).

Mass Resolution: What is it?Mass Resolution: What is it?

• m - measured mass
• Δm - peak width measured at

50% peak intensity (Full Width
Half Maximum)

- or the mass difference
between two adjacent peaks
of equal intensity, in this case
pw @ 10% valley definition is
used.

• m - measured mass
• Δm - peak width measured at

50% peak intensity (Full Width
Half Maximum)

- or the mass difference
between two adjacent peaks
of equal intensity, in this case
pw @ 10% valley definition is
used.



Resolution & Peak WidthResolution & Peak WidthResolution & Peak WidthResolution & Peak Width



• At minimum the resolution of the mass analyzer should be
sufficient to separate two ions differing by one mass unit
anywhere in the mass range scanned (unit mass resolution).

• Typical values of resolution for low resolution mass analyzers
(e.g. quadrupoles and ion traps) are below 5000.

• High resolution instruments have a resolution exceeding 15000.
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Mass ResolutionMass Resolution: What is it?: What is it?

Mass spectrometer
FT-ICR-MS

Orbitrap
HR-ToFHR-ToF

Magnetic Sectors
Quadrupole / IonTrap in UltraZoom mode

Quadrupole / IonTrap

Mass ResolutionMass Resolution: What is it?: What is it?

Resolving Power (FWHM)
1,000,000
500,000
60,00060,000
10,000

Quadrupole / IonTrap in UltraZoom mode 5,000
1,000
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• Mass accuracy is the precision of which the mass is measured by
the mass spectrometer.

• Typical way of reporting mass error in ppm (relative mass error):

• Absolute mass error can be used (mDa).

• Main advantage: the possibility to determine the elemental
composition of individual molecular or fragment ions, a powerful
tool for the structural elucidation or confirmation.
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• Accurate mass measurements take advantage of the fact that the combination of
elements contained in a molecule have a very specific, non-nominal molecular
weight:

– Carbon has a mass of 12.0000
– Hydrogen has a mass of 1.0078
– Oxygen has a mass of 15.9949
– Nitrogen has a mass of 14.0031

Mass accuracy depends on resolution
Higher resolution allows for better mass accuracy
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• Typical mass accuracy capability for various MS types:

Mass AccuracyMass Accuracy

• Typical mass accuracy capability for various MS types:

Mass AccuracyMass Accuracy

Source: Metabolomics Fiehn’s lab





Major accurateMajor accurate--massmass analyzersanalyzers for Life Sciencefor Life ScienceMajor accurateMajor accurate--massmass analyzersanalyzers for Life Sciencefor Life Science



OrbitrapOrbitrap Mass Analyzer:Mass Analyzer: Principle of OperationPrinciple of Operation
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 Characteristic frequencies:
• Frequency of rotation ωφ

• Frequency of radial oscillations ωr
• Frequency of axial  oscillations ωz
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• Accurate mass measurement is the experimentally determined mass
measured to an appropriate degree of accuracy and precision ( Gross, J.
Am. Soc. Mass Spectrom.,1994 )

• Accurate mass measurements narrow down the list of possible
formulae for a particular molecular weight

• Mass spectrum and analyst complete the picture:
– Isotope distributions indicate/eliminate elements ( e.g. Cl, Br, Cu )

– User-supplied info eliminates others ( e.g. no F, Co )

– Suggested formula has to make chemical sense: (C6H28O2 is not reasonable nor
is Cl3H2Co4 )

Mass Accuracy: I.D. of unknown compoundsMass Accuracy: I.D. of unknown compounds

• Accurate mass measurement is the experimentally determined mass
measured to an appropriate degree of accuracy and precision ( Gross, J.
Am. Soc. Mass Spectrom.,1994 )

• Accurate mass measurements narrow down the list of possible
formulae for a particular molecular weight

• Mass spectrum and analyst complete the picture:
– Isotope distributions indicate/eliminate elements ( e.g. Cl, Br, Cu )

– User-supplied info eliminates others ( e.g. no F, Co )

– Suggested formula has to make chemical sense: (C6H28O2 is not reasonable nor
is Cl3H2Co4 )

• Accurate mass measurement is the experimentally determined mass
measured to an appropriate degree of accuracy and precision ( Gross, J.
Am. Soc. Mass Spectrom.,1994 )

• Accurate mass measurements narrow down the list of possible
formulae for a particular molecular weight

• Mass spectrum and analyst complete the picture:
– Isotope distributions indicate/eliminate elements ( e.g. Cl, Br, Cu )

– User-supplied info eliminates others ( e.g. no F, Co )

– Suggested formula has to make chemical sense: (C6H28O2 is not reasonable nor
is Cl3H2Co4 )

Mass Accuracy: I.D. of unknown compoundsMass Accuracy: I.D. of unknown compounds

• Accurate mass measurement is the experimentally determined mass
measured to an appropriate degree of accuracy and precision ( Gross, J.
Am. Soc. Mass Spectrom.,1994 )

• Accurate mass measurements narrow down the list of possible
formulae for a particular molecular weight

• Mass spectrum and analyst complete the picture:
– Isotope distributions indicate/eliminate elements ( e.g. Cl, Br, Cu )

– User-supplied info eliminates others ( e.g. no F, Co )

– Suggested formula has to make chemical sense: (C6H28O2 is not reasonable nor
is Cl3H2Co4 )



• The effect of mass accuracy and molecular weight on the
number of potential chemical formulae.

Mass accuracy for chemical formulae IDMass accuracy for chemical formulae ID
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Generate Formula fromGenerate Formula from MonoisotopicMonoisotopic MassMass

Right click on mass
Then select

Generate formula form mass

0.549 ppm Mass Accuracy

Generate Formula fromGenerate Formula from MonoisotopicMonoisotopic MassMass

10 ppb

100 ppb

1000 ppb



Elemental Composition Generates by Monoisotopic MassElemental Composition Generates by Monoisotopic MassElemental Composition Generates by Monoisotopic MassElemental Composition Generates by Monoisotopic Mass
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Compound ID confirmation through Isotopic Pattern MatchCompound ID confirmation through Isotopic Pattern MatchCompound ID confirmation through Isotopic Pattern MatchCompound ID confirmation through Isotopic Pattern Match



UHPLC with QUHPLC with Q ExactiveExactive Mass SpectrometerMass Spectrometer

http://planetorbitrap.com/

UHPLC with QUHPLC with Q ExactiveExactive Mass SpectrometerMass Spectrometer
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