

AA ICP ICPMS which technique should I use?

Atomic Absorption Spectrometry (FAAS)

2600°C with the $N_2O/acetylene$ flame

- Air/acetylene or a nitrous oxide/acetylene flame is used to evaporate the solvent and dissociate the sample into its component atoms
- When light from a hollow cathode lamp (selected based on the element to be determined) passes through the cloud of atoms, the atoms of interest absorb the light from the lamp. This is measured by a detector, and used to calculate the concentration of that element in the original sample.

- Compounds of the alkali metals, and many of the heavy metals such as Pb or Cd and transition metals : Mn, Ni are all atomized with good efficiency with either flame type, with typical FAAS detection limits in the *sub-ppm range*.
 - Refractory elements : V, Zr, Mo and B which do not perform well with a flame source, even with the N₂O/acetylene flame, is insufficient to break down compounds of these elements. As a result, flame AAS sensitivity for these elements is not as good as other elemental analysis techniques.

Graphite Furnace Atomic Absorption Spectrometry (GFAAS)

This technique is essentially the same as flame AA, except the flame is replaced by a small, electrically heated graphite tube, or cuvette, which is heated to a temperature up to 3000°C to generate the cloud of atoms. The higher atom density and longer residence time in the tube improve furnace AAS detection limits by a factor of up to 1000x compared to flame AAS, down to the *sub-ppb range*. However, because of the temperature limitation and the use of graphite cuvettes, refractory element performance is still somewhat limited.

- A plasma will excite the atoms and ions that travel through it. When an atom or ion is excited, its electrons jump from a lower to higher energy level. Upon relaxation of these electrons to their initial 'ground' state, energy is emitted in the form of photons. The emitted photons possess wavelengths that are characteristic of their respective elements
- A detector measures the intensity of the emitted light, and calculates the concentration of that particular element in the sample
- Temperatures as high as 10,000°C, where even the most refractory elements are atomized with high efficiency. As a result, detection limits for these elements can be orders of magnitude lower with ICP than with FAAS techniques, typically at the 1-10 parts-per-billion level.
- Simultaneous ICP instruments can screen for up to 60 elements in a single sample run of less than one minute

Figure 1. Excitation of an atom by a plasma.

Detection Limits and Dynamic range

Detection Limits

Element	Flame AAS (ppb)	GFAAS (ppb)	ICP AES (Radial) (ppb)	ICP AES (Axial) (ppb)	ICP-MS (Quad) (ppt)	Element	Flame AAS (ppb)	GFAAS (ppb)	ICP AES (Radial) (ppb)	ICP AES (Axial) (ppb)	ICP-MS (ppt)
Ag	2	0.05	2	0.5	0.01-0.1	Nb	2000		4		0.01-0.1
Al	30	0.25	6	1.5	0.1-10	Nd	850		2		0.01-0.1
As	300	0.33	12	2	1-10	Ni	10	0.24	6	0.4	0.1-10
Au	8	0.15	6	0.6	0.01-0.1	Os	100		5		0.01-0.1
В	500	43	0.5	0.2	10-100	Р	4000	100	18	13	>1,000
Ba	20	0.4	0.2	0.04	0.01-0.1	Рь	10	0.04	14	1	0.01-0.1
Be	1	0.025	0.2	0.06	0.1-1	Pd	10	0.5	2		0.01-0.1
Bi	50	0.3	18	2	0.01-0.1	Pr	5000		0.8		0.01-0.1
С			50			Pt	75	4.5	20		0.01-0.1
Ca	1	0.04	0.03	0.03	1-100	Rb	5	0.06	35		0.01-0.1
Cd	1.5	0.02	1	0.1	0.01-0.1	Re	800		11		0.01-0.1
Ce	100,000		8		0.01-0.1	Rh	3	0.4	5		0.01-0.1
Co	5	0.5	2	0.5	0.1-1	Ru	100	0.75	4		0.01-0.1
Cr	6	0.025	2	0.4	0.1-1	S			20	28	>1,000
Cs	4	0.3	3200		0.01-0.1	Sb	40	0.35	18	2	0.01-0.1
Cu	3	0.07	2	0.3	0.1-1	Sc	30		0.2	0.05	1-10
Dy	40	1.8	0.3		0.01-0.1	Se	500	0.65	20	5	1-100
Er	35	3.8	0.7		0.01-0.1	Si	200	0.8	5	2	>1,000
Eu	1.5	0.8	0.3		0.01-0.1	Sm	750		7		0.01-0.1
Fe	6	0.06	1	0.3	0.1-100	Sn	95	0.6	0.1	0.01	0.01-0.1
Ga	65	23	7		0.1-10	Sr	2	0.1	0.1	0.01	0.01-0.1
Gd	2000		3		0.01-0.1	Та	1500		9		0.01-0.1
Ge	100	0.5	10		1-10	Тъ	700	0.2	5		0.01-0.1
Hf	2000	10	4		0.01-0.1	Te	30	0.5	27		1-10
Hg	145	18	9	1.2	1-10	Th			17		0.01-0.1
Ho	60	0.0	0.5		0.01-0.1	Ti	70	1.6	0.6	0.09	0.1-1
In	40	0.3	18		0.01-0.1	Tl	20	0.75	16	3	0.01-0.1
lf V	500	4	4	0.5	0.01-0.1	Tm	20		1.5		0.01-0.1
N.	2000	0.02	0.02	0.5	0.1-100	U	40000		3.5	0.4	0.01-0.1
La	2000	0.1	1		0.01-0.1	V	50	0.7	2	0.5	0.01-10
L1	200	0.1	0.05		0.01-1	W	750		17		0.01-0.1
Lu	300	0.01	0.05	0.02	0.01-0.1	Y	350		0.2		0.01-0.1
Me	0.3	0.01	0.1	0.05	0.1-1	Yb	4	0.15	0.3		0.01-0.1
Mo	20	0.03	0.3	0.05	0.1-1	Zn	1.0	0.0075	1	0.06	0.1-10
No	20	0.14	4	0.3	0.01-0.1	Zr	1500		0.8		0.01-0.1
INa	0.3	0.05	1	0.2	0.1-100						

3 sigma detection limits in deionized water.

"Precision" is a measure of the confidence you can have in your measured results

Flame AAS	Short term : 0.1-1.0% Long term : 1-2% (2beam optic)	Short term 0.5-5% Long term : highly dependent on the tube type and condition	GFAAS
ICP-OES	Short term : 0.1-2% Long term : <1-5%	Short term : 0.5-2% Long term : <4%	ICP-MS

• Long-term precision in any of the techniques can be improved by more frequent instrument calibration or drift correction techniques. precision.

Your Scientific Specialist

• The use of internal standardization can significantly improve precision in ICP and ICPMS

- How many samples can a particular technique analyze in a given time?
- How many elements can be determined?

Sequential

- ICP-AES (Sequential): 5-6 elements per minute for each sample
- FAAS: 4 seconds per element for each sample
- GFAAS: 2-3 minutes per element for each sample

Simultaneous

ICP-MS: All elements in 2-3 minutes

ICP AES (Simultaneous): All elements in 2.3 minutes																	
H 1.008	TCP-AES (Simultaneous): All elements in 2-3 minutes							He 4.003									
3 Li 6.941	4 Be 1.008											5 B 10.01	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.06	21 Sc 44.96	22 Ti 47.68	23 V 50.94	24 Cr 52.00	25 Mn 64.94	26 Fe 55.85	27 Co 58.47	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 ¥ 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	Xe 131.3
55 Cs 132.9	56 Ba 137 3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183 9	75 Re 186.2	76 Os 190 2	77 Ir 190 2	70 Pt 195.1	79 Au 197.0	80 Hg 200 5	01 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
67 Fr (223)	88 Ra (226)	89 Ac (227)		68 Ce 140.1	69 Pr 140.9	60 Nd 144.2	61 Pm (147)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
			90 91 92 93 94 95 96 97 90 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk C/41 Q449 Q459 Q459 <th< td=""></th<>														
	ICP/ICP-MS/AA ICP-MS							MS									
	ICP/ICP-MS ICP																

- For less than 5 elements per sample,
 FAAS is often the quickest technique,
 depending on the total number of
 samples.
- For 5-15 elements, sequential ICP-AES is the optimum choice.
- Above 15 elements, either ICP-MS or simultaneous ICP-OES is the best choice.
- GFAAS will always be the slowest of the techniques

FAAS	GFAAS
• acetylene/nitrous oxide	• argon gas
gases	 hollow cathode lamps
• compressed air source	 graphite tubes and cones
• hollow cathode lamps	 reagents and standards
• reagents and standards	• power
• power	 cooling wat
ICP-OES	ICP-MS
• argon gas	• argon gas 5
• quartz torches	• quartz torc
• reagents and standards	• sampling and skin s
• pump tubing	• reagents and stan
• power	• pump tubing
 cooling water 	• power
	 cooling water

	Flame AAS	GFAAS	ICP-AES	ICP-MS
Detection limits	Very good for some elements	Excellent for some element	Very good for most elements	Excellent for most element
Sample throughput	10-15 secs per element	3-4 mins per element	1-60 element/minute	All elements/1 min
Dynamic range	10 ³	10 ²	10 ⁶	10 ¹⁰
Precision				
Short term	0.1-1%	0.5-5%	0.1-2.0%	0.5-2%
Long term	1-2% (2-beam)	1-10%	0.000/	2-4%
Dissolved solids in sol	0.5-5%	>20% (Slurries)	0-20%	0.1-0.4%
Element applicable to	68+	50+	73	82
Sample volume required	Large	Very small	Medium	Very small to medium
Semi-Quantitative analysis	No	No	Yes	Yes

	Flame AAS	GFAAS	ICP-AES	ICP-MS
Ease of use	Very easy	Moderately easy	Easy	Moderately easy
Method development	Easy	Difficult	Moderately easy	Difficult
Capital costs	Low	Medium to high	High	Very high
Running costs	Low	Medium	High	High
Cost per elemental analy	ysis			
High volume – few elements	Low	High	Medium	Medium
High volume – many elements	Medium	High	Low-Medium	Low-Medium

Field Typical Applicat		Turinel Annlinetions	C	ommonly used Techni	ques	
5	Field	Typical Applications	AA	ICP-OES	ICP-MS	
	Environmental	Water Soil Air				
	Food	Food safety Nutritional labeling				
	Pharmaceutical	Drug / Clinical				
	Petrochemical	Petroleum refining Lubricants and oil				
	Chemical / Industrial	QC/Product testing				
	Agriculture	Soil				
	Geochemical/Mining	Exploration Research				
	Bio-monitoring	Biological Fluids			-	
	Semiconductor	Wafers High-Purity Chemicals				Frequency of Technique Used
	Nuclear Energy	Low-level waste Process water				
	Renewable Energy	Biofuels Solar panels				
	Nano materials	Research				ur Scientific Specialist

Applications

- Honey is predominantly fructose and glucose, combined with a mixture of other natural ingredients such as organic acids and enzymes. It also contains a small percentage of metals, including potassium, sodium, magnesium and calcium.
- The metal composition is geographically significant, as the majority of metals in honey are transferred from the soil to the plant or flower.
- Metals can also be transferred from other sources such as water aerosol spray and atmospheric pollution.
- The viscous and sugary nature of honey makes it a difficult substance for quantitative trace elemental analysis.
- Standards may require matrix matching to take into account the change in viscosity
- Acid digestion can be used to remove the organic material from the sample prior to dilution with water.

The Analysis of Trace Elements in Honey by Flame and Graphite Furnace Atomic Absorption Spectrometry

becca Price, Thermo Fisher Scientific, Cambridge, UK.

 The robust flame sample introduction system allows dissolved honey samples to be run without blockage

 The advanced furnace autosampler speeds up analysis by automatically preparing the working standards from a single master standard.
 The permanently aligned true dual atomizer enables

rapid switching between flame and furnace methods. • Deuterium and Zeeman background correction offer a flexible solution for the analysis of challenging matrices

Atomic Absorption, Flame, Deuterium, Graphite Furnace, Honey, Zeema

Key Benefits

or contamination.

such as honey.

Summary The Thermo Scientific (CE 1500 Atomic Absorption Spectrometer is the ideal solution for the analysis of major, minor and toxic elements in honey. The permanently aligned true dual atomic allows robust and reliable analysis of major elements by flame, followed by accurate and precise determination of minor and toxic elements by graphite furmace.

Introduction

Hency is a weet and viscous ubstance produced from the next and secretions of plants and flows. The next aris transported to a behavior by house plants, where werker best from a variety of plants and flowers, though in created from a variety of plants and flowers in its abundance, mensional house y can be produced, and this is abundance, mensional house y can be produced, and this arise, where a product are behavior flow a variety of sources. This has resulted in an alphal market with house y and the source of the source of the source of of sources. This has resulted in a alphal market with and crystallizations products are blood flower y must address to strict composition criteria, including sugar, monitors and indivencently context.

Staget is often substituted with horey in the making of a dee prodects. Note only is horey were the manage, and therefore used as a sugar aftermative, it is also hygroscoperlites causes it to attract and hold were; excellenting in the state of the state of the state of the state of the fractors and phones, combined with a mixture of other proteins and phones, combined with a mixture of other and contains a small percentage of metals, including persistants, addimental percentage of the state of the state perilies of howers is therefore significantly important on therefore and metal individual infinitional

Flame method

Spectrometer Parameter	Magnesium	Sodium	
Flame type	Air/Ace	etylene	
Fuel flow I/min	1.	.0	
Burner height / mm	8.6	6.2	
Wavelength / nm	285.2	589.0	
Bandpass / nm	0.2		
Background correction	Deuterium	None	
Measurement time / s	4		
Number of resamples	3		
Calibration type	Segmented curve fit		

Furnace method

Spectrometer Parameter	Cadmium	Lead	
Wavelength / nm	228.8	217.0	
Cuvette	Electrographite	ELC (Extended Life Cuvette)	
Dry temperature / °C	1(00	
Ash temperature / °C	800		
Atomize temperature / °C	1000	1200	
Bandpass / nm	0.5		
Background correction	Zeeman		
Signal measurement	Transient Height		
Number of resamples	3		
Calibration type	Quadratic least squares fit		

Your Scientific Specialist

Sample	Concentratio honey san	on in original nple / ppm
	Magnesium	Sodium
Spanish Orange Blossom	9.26	16.9
Australian Eucalyptus	25.33	94.08
Brazilian Pure Set	25.14	42.83
	Spiked	Honey
Measured concentration in solution / ppm	0.196	0.187
% Recovery	96	92

Results

- Analysis by flame took only 12 seconds for a triplicate reading on a single sample .
- Cd and Pb were not detected in analyzed honey samples.
- Honey sample was prepared with a spike equal to 5 ppb in the diluted sample.

	Cadmium	Lead
Measured concentration in solution / ppb	4.66	5.49
% Recovery	93	110

Cadmium is a heavy metal used in a variety of applications, such as steel plating, as a pigment in plastics and glasses, and in the production of batteries. These industrial activities are the main route through which cadmium is released into the environment where it accumulates in water and soil, and subsequently plants, animals and fish through uptake and ingestion. One of the main routes of human exposure to cadmium is therefore through the ingestion of foodstuffs.

- Typical maximum levels of cadmium in foodstuffs are currently between 0.05 0.2 mg/kg wet weight.
- The main ingredients in chocolate consist of cocoa, milk and fats, each of which is a potential source of cadmium.

Your Scientific Specialist

1 mg/l cadmium sub-standard was prepared in deionised water for spiking of samples prior to digestion

- 10 μg/l sub-standard was made up in 7% nitric acid and 1% hydrogen peroxide to matrix match to the digested samples.
- Blank and diluent were also prepared at 7% nitric acid and 1% hydrogen peroxide.
- A matrix modifier : 2 g/l of ammonium nitrate
- Cadmium was analyzed at 228.8 nm and Zeeman background correction

Furnace Method

Phase	Temperature / °C	Time / s	Ramp / °C/s
Dry	110	30	10
Ash	400	20	150
Atomize	1300	3	0
Clean	2500	3	0

Sample	Measured Concentration µg/l	Concentration in original sample mg/kg	Calculated Recovery Spiked / %
USA Origin, Milk	0.030	0.010	
USA Origin, Milk, Spiked	5.095		101
UK Origin, Milk	0.038	0.012	
UK Origin, Milk, Spiked	5.182		103
USA Origin, Dark	0.124	0.042	
USA Origin, Dark, Spiked	4.761		93

Results for the analysis of cadmium in chocolate following analysis by GFAAS

China and India have seen a huge increase in the consumption of bottled water in the last decades

Chinese regulations:

GB 8537–2008 - Drinking natural mineral water GB 17324–2003 - Hygienic standard of bottled purified water for drinking GB 5749–2006 - Standards for drinking water quality GB 3838–2002 - Environmental quality standard for surface water

Indian regulations:

IS 10500:2012 - Drinking Water

IS 13428:2005 - Packaged natural mineral water

IS 14543:2004 - Packaged drinking water (other than packaged

natural mineral

Element	GB 8537-2008	GB 17324-2003	GB 5749-2006	GB 3838-2002 (I) ¹	IS 10500:2012	IS 13428:2005	IS 14543:2004
Arsenic	0.01	0.01	0.01	0.05	0.01	0.05	0.05
Cadmium	0.003	#	0.005	0.001	0.003	0.003	0.01
Chromium*	0.05	2	0.05	0.01	0.05	0.05	0.05
Copper	1	0.01	1	0.01	0.05	1	0.05
Iron	140	÷	0.3	0.3	0.3	-	0.1
Lead	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Mercury	0.001	-	0.001	0.00005	0.001	0.001	0.001
Nickel	0.02	-	0.02	0.02	0.02	0.02	0.02
Zinc	0.2	τ.	1	0.05	5	5	5

Table 1. Maximum permissible levels in mg·kg-1.

Thermo Scientific™ iCAP™ 7200 ICP-OES Duo with Qtegra™ Intelligent Scientific Data Solution™ (ISDS) Software

- Tap water sample from Dingpu river area, Shanghai
- Tap water sample from Jinqiao lake area, Shanghai
- Waterman (packaged drinking water)
- Nestle (natural mineral water)
- Evian (natural mineral water)

• Samples did not require any pre-treatment

 Samples were analyzed directly after preservation in 0.5% AR grade nitric acid (HNO₃)

Parameter	Setting
Pump Tubing	Sample Tygon [®] orange/white Drain Tygon [®] white/white
Pump Speed	45 rpm
Nebulizer	Glass concentric
Nebulizer Gas Flow	0.19 MPa
Spray Chamber	Glass cyclonic
Auxiliary Gas Flow	0.5 L·min ⁻¹
Coolant Gas Flow	12 L-min ⁻¹
Center Tube	2 mm
RF Power	1150 W
Plasma View	Axial
Exposure Time	5 s

Averaged results and method detection limits in μ g·kg-1.

Element and wavelength (nm)	MDL	Dingpu River	Jinquiao Lake	Waterman	Nestle	Evian
As 193.759	2.14	<dl< th=""><th>1.27</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	1.27	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Cd 214.438	0.07	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Cr 205.560	0.21	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Cu 324.754	0.39	<dl< th=""><th>1.52</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	1.52	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Fe 259.940	0.25	1.14	1.53	0.41	0.78	0.74
Hg 194.227	0.66	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Ni 231.604	0.36	1.05	0.57	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Pb 220.353	1.06	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
Zn 213.856	0.19	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>

Stability of the 10 μ g·kg-1 QC check over 4 hours

QC stability at 10ppb over 4 hours

- The analysis of trace elements in naphtha is important in petrochemical industry, especially in the cracking of hydrocarbons. The presence of trace elements can severely hamper this process as well as poison the catalysts used
- As can poison catalysts at trace concentrations (as low as 50 μg·kg-¹).
- As can cause problems with high temperature naphtha cracking tubes due to the formation of coke build-up.
- This build-up can result in the eventual failure of the tubes and subsequently reduce the production capabilities.
- Arsenic free naphtha is also the preferred feedstock for a number of downstream processes such as catalytic reforming, gasoline blending, and C5 and C6 isomerization.
- These processes are using platinum and palladium catalysts where the presence of arsenic would cause serious problems, poisoning the catalysts.

Authons Sanja Asendort, Application Specialist, Thermo Tarlee Scientific, Brenen, Germany

In the source to a work the TS (Sturing), a work the source (Tell transport (CP CCE) and the source and a source of the short the source or source of the SS comes to go Mark as a source of the short the source or source of the the source of the the source of the the source of the source is not source of the source of the source of the process on and source is not provide the source of the source of the process on and source is the source of theso adverted out on a source of the process on and a source is the source of the source

Thermo Fisher

- Interferences from carbon based emissions can be reduced by optimizing the radial viewing height.
- IsoMist[™] is a Peltier cooled spray chamber which was used in conjunction with a glass concentric nebulizer for this analysis : -10 °C

Parameter	Setting
Pump Tubing (Standard Pump)	Sample Solvent Flex orange/white Drain Solvent Flex white/white
Pump Speed	40 rpm
Nebulizer	Glass concentric
Nebulizer Gas Flow	0.45 L⋅min ⁻¹
Auxiliary Gas Flow	1.5 L·min ⁻¹
Coolant Gas Flow	12 L·min ⁻¹
Center Tube	1.5 mm
RF Power	1150 W
Radial Viewing Height	8 mm
Exposure Time	UV 15 s, Vis 5 s

Sample and standard preparation

Calution	Concentration (mg·kg ⁻¹)					
Solution	S-21+K	As	Hg			
Low standard	0.96	0.95	0.97			
High standard	4.88	4.90	4.89			
Spike	2.34	2.37	2.36			

Plasma aspirating naphtha after auxiliary and nebulizer gas flows have been optimized.

Element and wavelength (nm)	Spike concentration (mg·kg ⁻¹)	Measured spike concentration (mg·kg-¹)	Spike recovery (%)	RSD on three replicates of the spike (%)	MDL (µg⋅kg⁻¹)
Ag 328.068	2.34	2.44	104	1.36	3.4
AI 396.152	2.34	2.46	105	1.20	7.9
As 189.042	2.37	2.39	101	0.25	7.4
B 208.893	2.34	2.44	104	0.58	13
Ba 455.403	2.34	2.40	103	0.86	0.2
Ca 393.366	2.34	2.44	104	0.33	0.1
Cd 228.802	2.34	2.37	101	0.28	0.6
Cr 267.716	2.34	2.34	100	0.57	1.0
Cu 324.754	2.34	2.44	104	1.15	1.3
Fe 259.940	2.34	2.34	100	0.35	1.9
Hg 184.950	2.36	2.38	101	0.44	2.7
Mg 279.553	2.34	2.39	102	0.22	0.04
Mn 257.610	2.34	2.34	100	0.38	0.3
Mo 202.030	2,34	2.35	100	0.19	2.7
Na 589.592	2.34	2.43	104	1.43	10
Ni 221.647	2.34	2.30	98	0.32	1.6
P 178.284	2.34	2.36	101	0.19	11
Pb 220.353	2.34	2.27	97	0.12	7.6
Si 212.412	2.34	2.39	102	0.46	8.0
Sn 189.989	2.34	2.27	97	0.92	8.1
Ti 334.941	2.34	2.37	101	0.40	0.4
V 309.311	2.34	2.37	101	0.39	1.0
Zn 213.856	2.34	2.35	100	0.01	0.4

- All element recoveries fall within acceptable limits of ±5% of the true values
- RSD of the three replicates of the spiked blank are below
 1.5% for all elements.
- MDL are in the single digit
 μg·kg-1 range or lower.

Thermo Scientific™ Qtegra™ Intelligent Scientific Data Solution™ (ISDS) Software

52

ž

15

Which technique would you use for the analysis of total inorganic Mercury in urine and Lead in blood?? They do not have detection limits but would like to detect as low as possible

Dust, Paint, Soil, Industrial, Water, Toy, Food

- The United States Centers for Disease Control and Prevention (CDC) states that Blood Lead Levels (BLL) >70 µg/dL (700 ng/mL) can cause serious health effects.
- BLL as low as 10 µg/dL (100 ng/mL) are associated with cognitive development, growth, and behavioral issues in children between the ages of 1-5 years.

 As, Cd, Cr, Pb, Hg and Se in whole blood and Certified reference materials (Seronorm Trace Elements Whole Blood)

in whole blood using ICPMS

* Tetramethylammonium hydroxide (TMAH, 1.5%), Hydrochloric acid (HCl, 1.5%), Ammonium Pyrrolidine dithiocarbamate (APDC), Triton-X and 0.1 μg/L of ¹⁰³Rh (Internal standard)

in whole blood using ICPMS

Symbol	Mass	Abundance	
82Kr	81.9135	11.600	
1H + 81Br	81.9241	49.303	
160 + 1H + 65Cu	81.9305	30.752	
16O + 66Zn	81.9209	27.834	
12C + 70Ge	81.9242	20.275	
14N + 68Zn	81.9279	18.731	
13C + 69Ga	81,9289	0.661	
40Ar + 42Ca	81.9210	0.644	
12C + 70Zn	81.9253	0.593	
160 + 3H + 63Cu	81.9405	0.000	
170 + 2H + 63Cu	81.9428	0.000	
18O + 1H + 63Cu	81.9366	0.138	- 1
164Dy++	81.9646	28.200	- 1
163Dv++	81 4644	24 900	

 82 Se is chosen based on less possible argon based interferences compare to 80 Se (40 Ar₂ ⁺).

Selecte	ed analyte is	Internal standard isotope	
⁷⁵ As	¹¹⁴ Cd	⁸² Se	¹⁰³ Rh
⁵² Cr	²⁰² Hg		
⁶³ Cu	²⁰⁸ Pb		

⁶³Cu is chosen based on it abundance.

	Symbol	Mass	Abundance	Interferences
	106Cd	105.9065	1.25	106Pd(27.330%); 16
	108Cd	107.9042	0.89	108Pd(26.460%); 1H .
	110Cd	109.9030	12.49	110Pd(11.720%); 16
	111Cd	110.9042	12.80	12C + 99Tc(0.000%);
	112Cd	111.9028	24.13	112Sn(0.970%); 40Ar
	113Cd	112.9044	12.22	113ln(4.300%); 14N +
•	114Cd	113.9034	28.73	114Sn(0.650%); 40Ar
	116Cd	115.9048	7.49	116Sn(14.530%); 16

Possible interferences for 114Cd						
Symbol	Mass	Abundance	-			
114Sn	113.9028	0.650				
40Ar + 74Ge	113.8836	36.354				
12C + 102Ru	113.9043	31.252				
16O + 98Mo	113.9003	24.073				
14N + 100Ru	113.9073	12.554				
1H + 113Cd	113.9122	12.218				
14N + 100Mo	113.9105	9.595				
16O + 1H + 97Mo	113.9088	9.526				
1H + 113In	113.9119	4.299				
16O + 98Ru	113.9002	1.876				
40Ar + 74Se	113.8849	0.896				
12C + 102Pd	113.9056	1.009				
15N + 99Tc	113.9064	0.000	- 1			
== 13C + 101Ru	113 9089	0 187				
15N + 99Tc 13C + 101Ru	113.9064 113.9089	0.0	00 <u>87</u> Cl			

in whole blood using ICPMS

in whole blood using ICPMS

Element	CRM	Certified Value	Acceptable range	Found (± SD, n = 3)					
		(ng/mL)	(ng/mL)	(ng/mL)	Element	CRM	Certified	Acceptable	Found (±
As	L1	2.4	1.4-3.4	2.77±0.09			Value (ng/mL)	range (ng/mL)	SD, n = 3) (ng/mL)
				103Rh (KE	DS) 📑	L1	1.5	0.90 – 2.10	2.24 ± 0.24
20	00 0 103Rh (/	(EDS)				L2	16	9.60 - 22.40	20.47 ± 0.39
C	50					L3	37.1	29.6 - 44.6	40.41 ± 1.55
1 [%]	00 0000		*****	• • • • • • • • • • • • •	<u>• • •</u>	L1	10.2	6.00 - 14.40	10.68 ± 0.36
Sec. 5	o					L2	310	186 - 434	394 ± 13
С	ł					L3	447	401 - 493	536 ± 22
	0	10	20 Sample Number	30	40	L1	59	35 - 69	69.03 ± 0.59
	LJ	23.2	18.5 – 27.9	0.64		L2	112	66 – 158	131 ± 5
						L3	272	217 – 327	258 ± 8

- The different As species can be classified as inorganic arsenic (iAs) and organic arsenic compounds.
- iAs as the sum of Arsenite As(III) and arsenate As(V) is a major concern for public health authorities worldwide.
- Drinking water, pesticides, wood preservatives, dust emission and disposal of industrial waste.
- Dietary : Cereals, rice or fruit and vegetables
- Exposure to iAs can result in a variety of adverse effects such as skin disorders, neuropathy, and lung, bladder and skin cancer.
- Organic species of As, such as arsenobetaine (AsBet), arsenocholine (AsChol) and arsenosugars, is primarily observed after consumption of fish or seafood and much less toxic

Simultaneous separation and quantification of six different As species in human urine samples.

- ✓ As(III)
- ✓ As(V)
- ✓ AsBet
- ✓ AsChol
- ✓ Dimethylarsinic acid (DMA)
- ✓ Monomethylarsonic acid (MMA)

Arsenic speciation in human urine by hyphenated IC and ICP-MS

Table 1. Ion Chromatography operating conditions.

Parameter	Value				
Columns	Dionex IonPac AG7 (4x50 mm) and AS7 (4x250 mm)				
Injection Volume	100 µL				
Eluents	A: Ultrapure water B: 100 mM (NH4) ₂ CO ₃ + 3% MeOH, pH 10.3				
Gradient	Time min 0-5 5.1-10 10.1-13 13.1-14	Flow mL·min ⁻¹ 0.7 1.5 1.5 0.7	% A 95 70 40 95	% B 5 30 60 5	

Table 2. ICP-MS operating conditions.

Parameter	Value
Nebulizer	PFA-ST nebulizer, pumped at 40 rpm
Spraychamber	Quartz, cyclonic spraychamber cooled at 2.7 $^{\circ}\mathrm{C}$
Injector	2.5 mm i.d., Quartz
Interface	Ni cones with High Matrix (3.5 mm) insert
RF Power	1550 W
Nebulizer Gas Flow	1.17 L·min ⁻¹
QCell settings	KED
Gas Flow	100% helium (99.999% Purity), 4.8 mL⋅min ^{.1}
QCell Bias	-18 V
Quadrupole Bias	-21 V
Scan Settings	0.05 s dwell time per analyte, 14 minutes acquisition time

Arsenic speciation in human urine by hyphenated IC and ICP-MS

Calibrations of six As species in urine samples diluted 1:5 with deionized ultrapure water, with calibration levels at 1, 2, 5, 10 μ g/L

✓ R²: 0.999-1.000 for all species.

		AsBet	DMA	As(III)	AsChol	ММА	As(V)	Sum of species
LoD (µg·L ⁻¹)		0.25	0.25	0.25	0.25	0.25	0.25	1
SRM 2669 Level I (µg·L-1)	Found	13.0±1.2	3.54±0.52	1.30±0.1	nc	2.00±0.42	2.07±0.32	21.9 ± 2.6
	Certified	12.4±1.9	3.47±0.41	1.47±0.1	nc	1.87±0.39	2.41±0.30	22.2±4.8*
SRM 2669 Level II (µg·L-1)	Found	1.38±0.10	26.4±1.05	4.45±0.40	3.94±0.32	7.58±0.52	5.65±0.41	49.4 ± 2.8
	Certified	1.43±0.08	25.3±0.7	5.03±0.31	3.74±0.35	7.18±0.56	6.16±0.95	50.7±6.3*
Intra-day repeatibiliy, N=10 (%)		2.23	1.63	1.10	1.93	1.34	1.49	
Inter-day repeatibiliy, N=10 (%)		3.50	3.25	2.98	3.52	3.20	4.45	

Ten samples of urine spiked with the different As species at concentrations of 2 $\mu g \cdot L\text{-1}$ each.

✓ LOD was 0.25 µg·L-1 for all the species

- ✓ Accuracy was in the ranges 86-107% for the Level I and 88-106% for the Level II materials.
- ✓ The intra-day and inter-day repeatability were on average 1.6% and 3.5%, respectively, for all the species.
- ✓ The sum of all As species accounted for 98.6% of the total certified As for the Level I and 97.4% for the Level II, respectively

Analysis of real samples (Urine of Children)

Subject	AsBet	DMA	As(III)	AsChol	ММА	As(V)
1	73.1	4.44	0.26	0.51	0.75	<lod< th=""></lod<>
2	27.3	1.75	<lod< th=""><th><lod< th=""><th>0.53</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.53</th><th><lod< th=""></lod<></th></lod<>	0.53	<lod< th=""></lod<>
3	66.6	0.40	<lod< th=""><th><lod< th=""><th>0.38</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.38</th><th><lod< th=""></lod<></th></lod<>	0.38	<lod< th=""></lod<>
4	22.4	5.50	0.47	<lod< th=""><th>0.50</th><th>0.75</th></lod<>	0.50	0.75
5	11.4	2.66	<lod< th=""><th><lod< th=""><th>0.52</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.52</th><th><lod< th=""></lod<></th></lod<>	0.52	<lod< th=""></lod<>
6	27.2	3.33	0.90	0.32	0.79	0.37
7	243	3.65	<lod< th=""><th>0.37</th><th>0.52</th><th><lod< th=""></lod<></th></lod<>	0.37	0.52	<lod< th=""></lod<>
8	769	<mark>4.</mark> 30	0.41	0.31	1.71	<lod< th=""></lod<>
9	17.8	1.11	<lod< th=""><th>0.34</th><th>0.41</th><th><lod< th=""></lod<></th></lod<>	0.34	0.41	<lod< th=""></lod<>
10	188	3.44	<lod< th=""><th>1.20</th><th>0.39</th><th><lod< th=""></lod<></th></lod<>	1.20	0.39	<lod< th=""></lod<>

Concentrations in μ g·L-1 of the six As species after the chromatographic separation.

- The results indicate that AsBet was the main arsenic species found in children's urine, representing about 90% of the total content of As found
- AsBet is a non-toxic species of marine food origin, even though As levels were found to vary strongly between 11.4 and up to 769 µg·L-1.
- sum of As(III) and As(V) was around or far less than 1 μ g·L-1.

Thank you for your attention!

www.scispec.co.th

SciSpec Line Account

เพื่อเป็นการเพิ่มช่องทางในการติดต่อสื่อสารระหว่างกัน ให้สะดวกและรวดเร็วยิ่งขึ้น SciSpec ได้เลือกใช้ Line@ Application เพื่อให้ลูกค้าทุกท่าน สามารถติดต่อกับ บริชัทฯ ได้ง่ายยิ่งขึ้น เทียงกด "Add friend" หรือ "เพิ่มเพื่อน" ใน application ของท่าน พิมพ์ @scispec เพียงเท่านี้ท่านก็สามารถ แจ้งความต้องการต่างๆ ผ่าน Chat box เข้า มาที่ บริชัทฯ ได้เลย โดยจะมีพนักงานทั้งฝ่าย sale service specialist และ back office คอยไห้บริการท่านทุกเวลา

หรือท่านสามารถ scan QR code ที่รูปด้านข้าง หรือ click ปุ่ม "Add friends" ได้เลย!!! นอกจากนี้บริษัทฯ จะทำการส่ง ข่าวสารและ Promotion ดีๆ ไปถึงท่านอีกมากมาย

