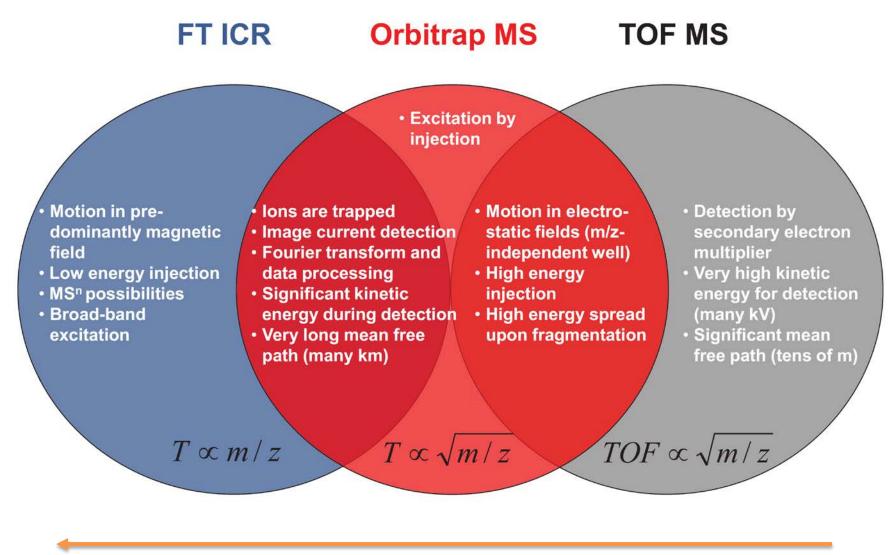


ORBITRAP Mass Spectrometer An Ultimate Qual and Quan Machine


Pongsagon Pothavorn Scispec Co., Ltd.

Information Rich Data

Accurate Mass in Life Science

Sci Spec Resolution

FT Ultra - ICR

Sci Spec

Thermo Scientific LTQ FT Ultra

Hybrid Mass Spectrometer Unprecedented Analytical Power

- Concentration independent ppb mass accuracy
- · Widest dynamic range
- Parallel detection
- · MS^a
- ECD and IRMPD
- Ultra high resolution
- Intelligent Data Dependant
- acquisition

Unprecedented Analytical Power

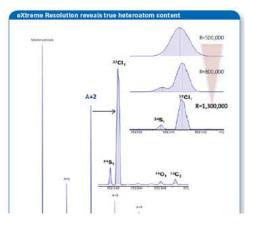
tions

The Thermo Scientific LTQ FT Ultra hybrid mass spectrometer delivers unprecedented analytical power for the most demanding applications.

The unmatched mass accuracy eliminates false positive identifications in bottom-up and middle-down proteomics and enables the unambiguous identification of unknown analytes with on-line LC-MSⁿ at any concentration.

Ultra high resolution is essential for the analysis of complex samples such as crude oil, Dissolved Organic Matter (DOM) or intact proteins. This is available with a single mouse click.

Brukers FT-ICR


BRUKER	Products	Applications	Service N	ews Events	About us	Login	Q	EN
solariX I	MRMS					X	X	
Contact					7	7	>4/1	
Home - Products -	Mass Spectrometry and Separa	ations - MRMS - solariX	- Overview					
Overview	Technical Details	Applications	Learn more					S

solariX MRMS - routine IFS for unambiguous results

The solariX MRMS (Magnetic Resonance Mass Spectrometry) instruments are available for different magnetic field strengths of 7T, 12T and 15T.

	7T solariX	12T solariX	15T solariX
maximum resolving power	>10M	>10M	>10M
Mass accuracy (internal)	600 ppb	300 ppb	250 ppb
ESI	yes	yes	yes
MALDI	optional	optional	optional
ETD	optional	optional	optional
detector	ParaCell XR or 2xR	ParaCell XR	ParaCell XR
magnetic field		12.1	101
annual cryogen fill	ves	yes	yes
quench line required	Ves	Ves	Ves

Key features of solariX series instruments

Your Scientific Specialist

Sci Spec

Waters Ion Mobility

Waters

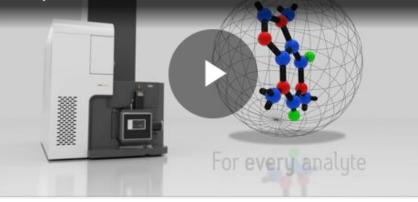
THE SCIENCE OF WHAT'S POSSIBLE.®

APPLICATIONS	PRODUCTS	RESOURCES	EDUCATION & EVENTS	SERVICES & SUPPORT	ABOUT WATERS

Home > Products > Instruments & Systems > Mass Spectrometry > Ion Mobility Mass Spectrometry >

Vion IMS QTof Ion Mobility Quadrupole Time-of-flight Mass Spectrometry

Vion IMS QTof Ion Mobility Quadrupole Timeof-flight Mass Spectrometry


Beyond Resolution

Does high resolution, accurate mass data always lead to the correct answer first time? Avoid additional confirmatory experiments by utilizing the selectivity of ion mobility. Featuring new geometry and including XS Ion Optics and the QuanTof2 detection system, the Vion IMS QTof has the sensitivity and dynamic range to make ion mobility quantitative and routinely usable, enabling:

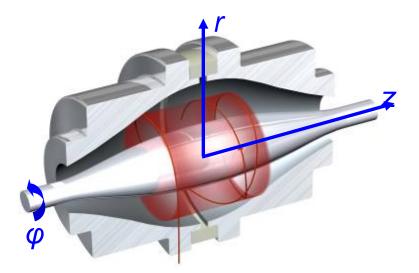
- easier data interpretation as ion mobility cleans up and simplifies every spectrum
- confident identification and quantification of analytes
- faster method development and higher sample throughput
- greater selectivity than conventional MS/MS with HDMS^E

Vion IMS QTof Mass Spectrometer

Go beyond resolution with the Waters Vion IMS QTof

LC-MS solutions for all analytical challenges

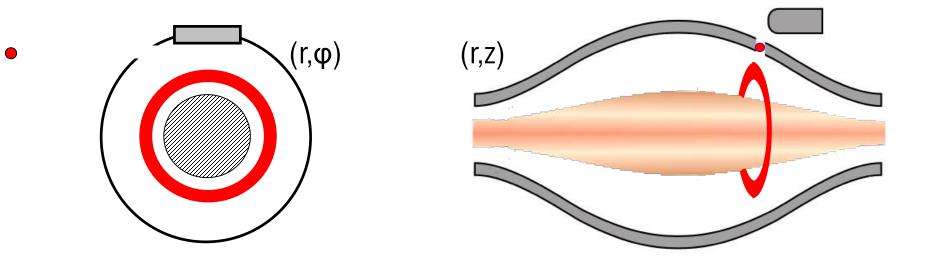
• Best LC-MS Portfolio



INVESTMENT

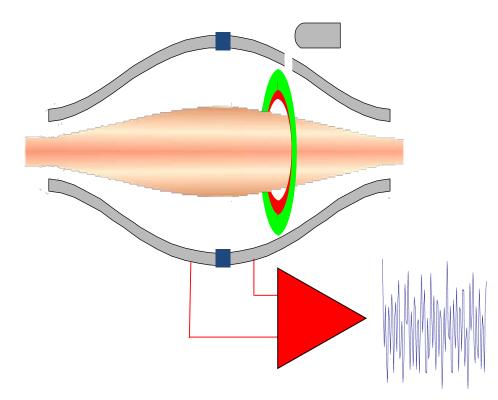
Induced by ion packets moving inside the trap

- Ions trapped in an electrostatic field
- Central electrode kept on high voltage
- Outer electrode is split and able to pick up an image current induced by ion packets moving inside the trap

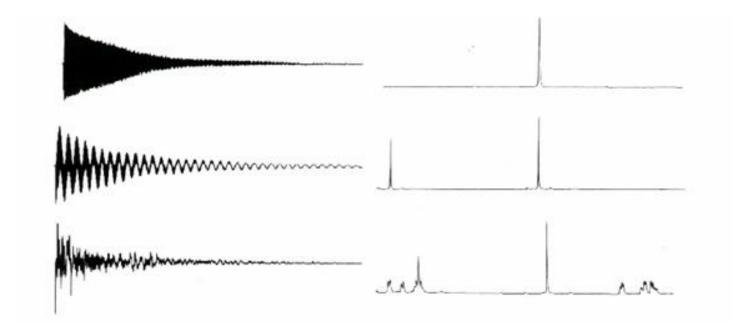


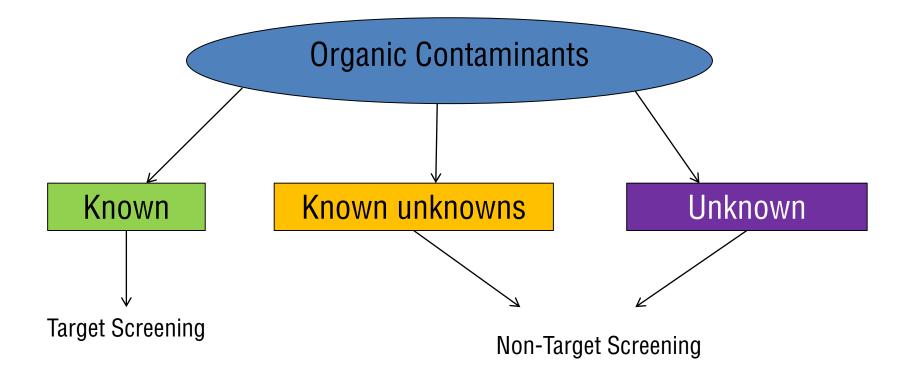
$$U(r,z) = \frac{k}{2} \cdot \left\{ z^2 - r^2 / 2 + R_m^2 \cdot \ln(r / R_m) \right\}$$

Ion Injection and Formation of Ion Rings


- An ion packet of a selected *m/z* enters the field
- Increasing voltage squeezes ions
- Voltage stabilises and ion trajectories are also stabilized
- Angular spreading forms a ROTATING RING

Fourier Transform-based

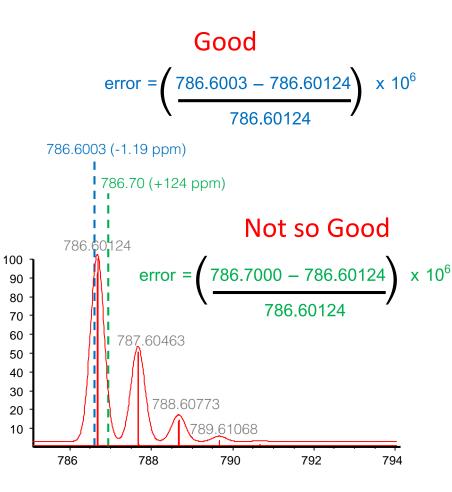

- The moving ion rings induce an image current on outer electrodes
- The frequency of harmonic oscillations is proportional to ions' m/z


Orbitrap and Nuclear Magnetic Resonance (NMR)

• Free Induction Decay (FID)

Time Domain ->Fourier Transform -> Spectrum (Frequency Domain)

Rapid and sensitive screening methods able to assign positive hits undoubtedly to particular organic compounds

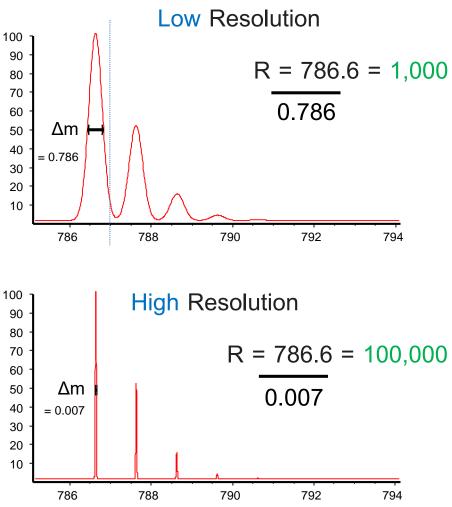

Type of MS	Mass accuracy	Utility for
Quadrupole	0.1 μ	Identify
Traps	0.1 μ	Identify
TOF	0.0001 µ	Empirical formula/ composition
Sector	0.0001 µ	Empirical formula/ composition
FT-MS	0.0001 µ	Empirical formula/ composition

Mass Accuracy

- The precision of which the mass is measured by the mass spectrometer.
- Typical way of reporting mass error in ppm (relative measure) or mDa (absolute measure)

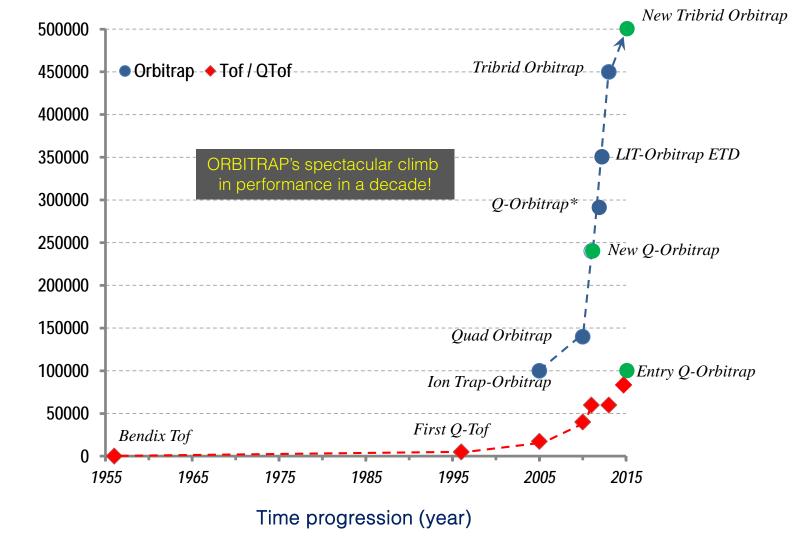
Mass error =
$$\begin{pmatrix} Measured - Exact Mass \\ Exact Mass \end{pmatrix} \times 10^{6}$$

C = 12.0000
O = 15.9949
S = 31.9721 H = 1.0078
N = 14.0031


Mass Resolution

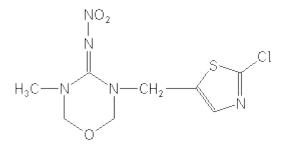
 Ability of a mass spectrometer to distinguish between ions of nearly equal m/z ratios (isobars).

$$R = \frac{m}{\Delta m} \longrightarrow \Delta m \text{ (FWHM)}$$

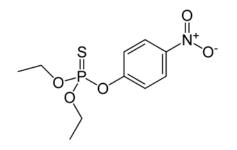

m - measured mass

 Δ m - peak width measured at 50% peak intensity (Full Width Half Maximum)

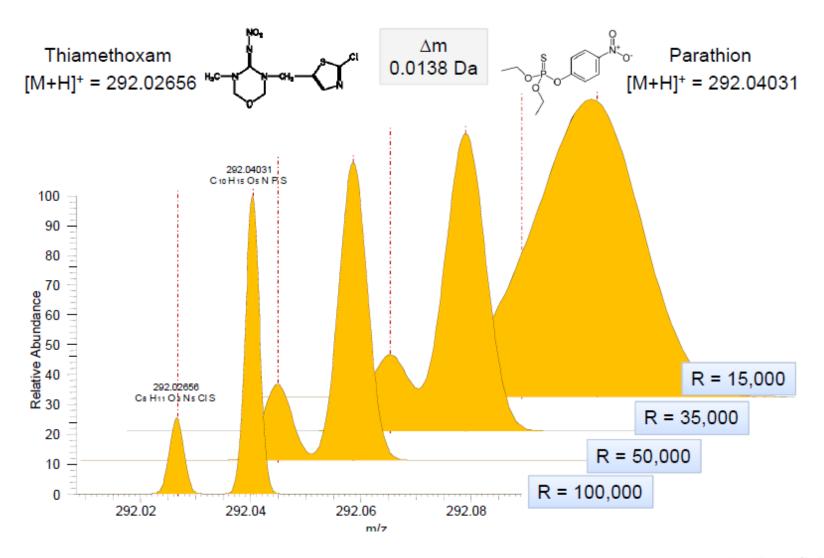
Commercial High Resolution MS Technology Race



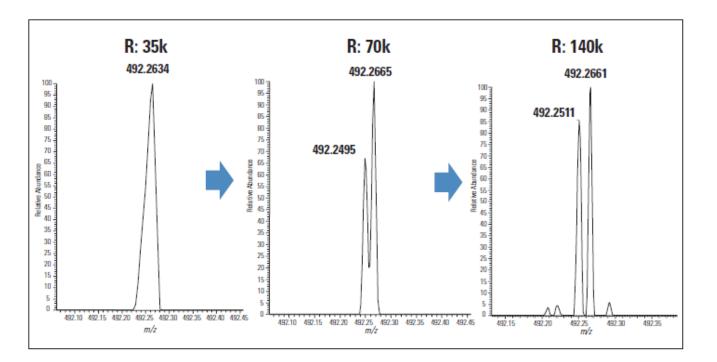
Mass resolution (FWHM)

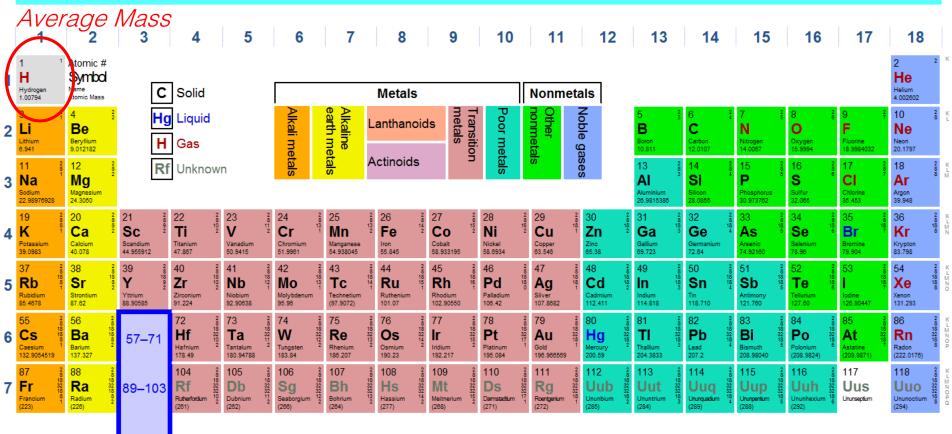

Sci Spec

Thiamethoxam: $[M+H]^+ = C_8H_{11}CIN_5O_3S$ (292.02656)



Parathion: $[M+H]^+ = C_{10}H_{15}NO_5PS$ (292.04031)


Isobaric Pesticides 3:1 Mix


Resolution – Why Is It Important?

- Enables accurate mass
- Increases confidence of identification
- Improves quantitative accuracy
- Gives access to qualitatively different information

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

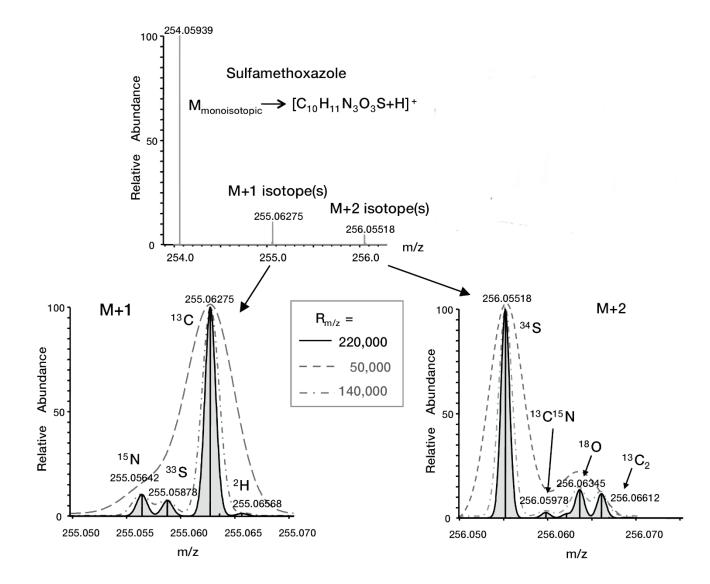
	Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/													
57 2 La 18 Lanthanum 2 138.90547	58 Ce Cerium 140.118	² ⁵ ⁹ ⁹ ⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	60 2 Nd 22 Neodymium 2 144.242	61 28 Pm 28 Promethium (145)	62 2 Sm 24 Samarium 150.38	63 2 Eu 25 Europium 2 151.984	64 28 64 28 6adolinium 2 157.25	65 2 Tb 28 Tb 27 8 7 158.92535	66 2 Dy 28 182.500	- 18	68 2 Er 30 Erbium 2 187.259	69 28 Tm 18 18 31 8 8 31 8 8 31 8 8 8 8 8 8 8 8 8 8 8 8 8	70 2 Yb 32 Ytterbium 173.054	71 2 Lu 18 Lutetium 2 174.9868
89 28 Actinium 92 (227) 2	90 Th Thorium 232.03806	² ⁸ ⁹ ⁹ ⁹ ⁹ ⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	92 28 U 18 Uranium 9 238.02891	93 ² Np ¹⁸ Neptunium ⁹ (237) ²	94 28 Pu 18 Plutonium 22 (244) 28	95 28 Am 322 Americium 2 (243)	96 28 Cm 322 Curium 9 (247)	97 28 Bk 322 Berkelium 2 (247)	98 28 Cf 322 Californium 2 (251)	99 2 Es 29 Einsteinium 8 (252) 28	100 28 Fm 322 56 56 70 70 70 70 70 70 70 70 70 70	101 ² Md ¹⁸ ³² Mendelevium ⁸ (258)	102 28 No 18 Nobelium 22 (259) 2	103 2 Lr 32 Lawrencium 9 (262)

How's About Mass Accuracy

- Average Mass = summing the <u>average atomic masses</u> of the constituent elements, H_2O ; 1.00794 + 1.00794 + 15.9994 = 18.01528.
- Exact Mass = summing the masses of the individual isotopes of the molecule, H2O; 1.0078 + 1.0078 + 15.9994 = 18.0106.

The Others Stories;

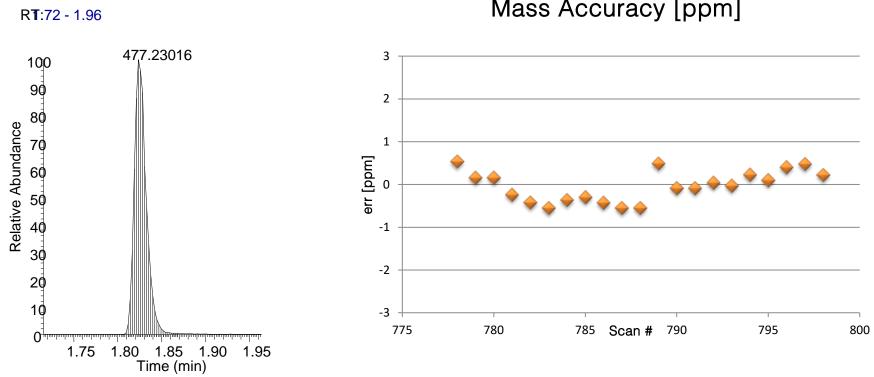
- Isotopomer (Isotopic Isomer) = same type of isotope but difference in position, CH₃CHDCH_{3 vs} CH₃CH₂CH₂D
- Isotopologues = difference in isotope in the molecules, $H_2O HOD$
- Monoisotopic = sum of masses in molecule. Using of most abundance or stable isotope.



Mass Accuracy – What for?

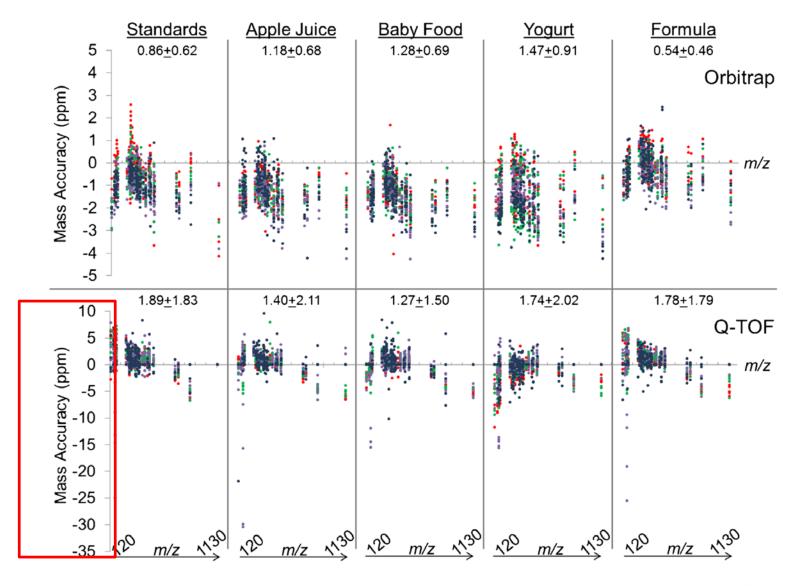
0 40 0000	H = 1.0078	0 = 15.9949
C = 12.0000	N = 14.0031	S = 31.9721

	Suggestions	Calc Mass
+/- 0.2	O_2 CH ₃ OH N ₂ H ₄ S	31.9898 32.0261 32.0374 31.9721
+/- 0.02 +/- 0.002	CH ₃ OH N ₂ H ₄	32.0261 32.0374 32.0261
		+/- 0.02 $CH_{3}OH$ N ₂ H ₄ S CH ₃ OH N ₂ H ₄


Determine Fine Isotopic Pattern

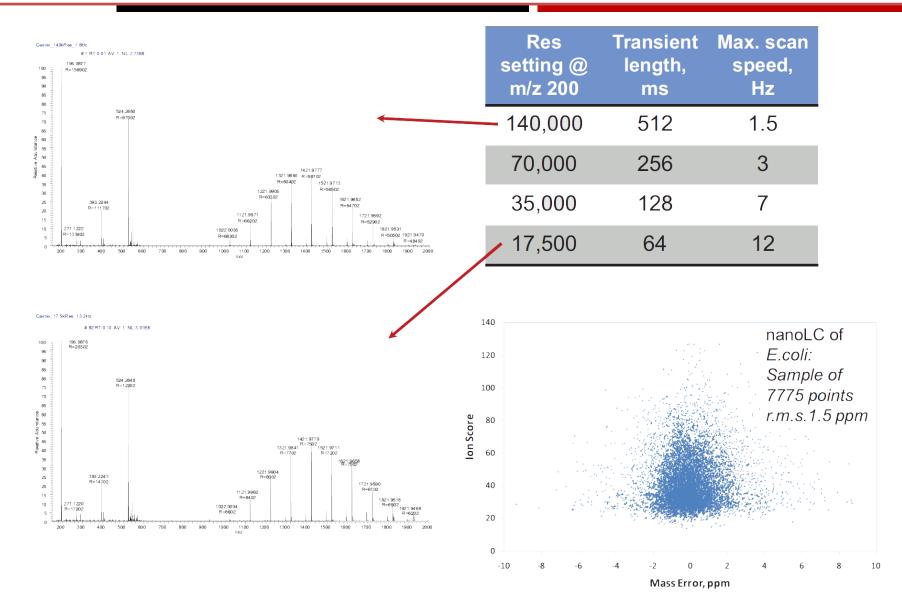
Mass Accuracy across the Elution Profile

- 21 scans per elution peak
- External calibration

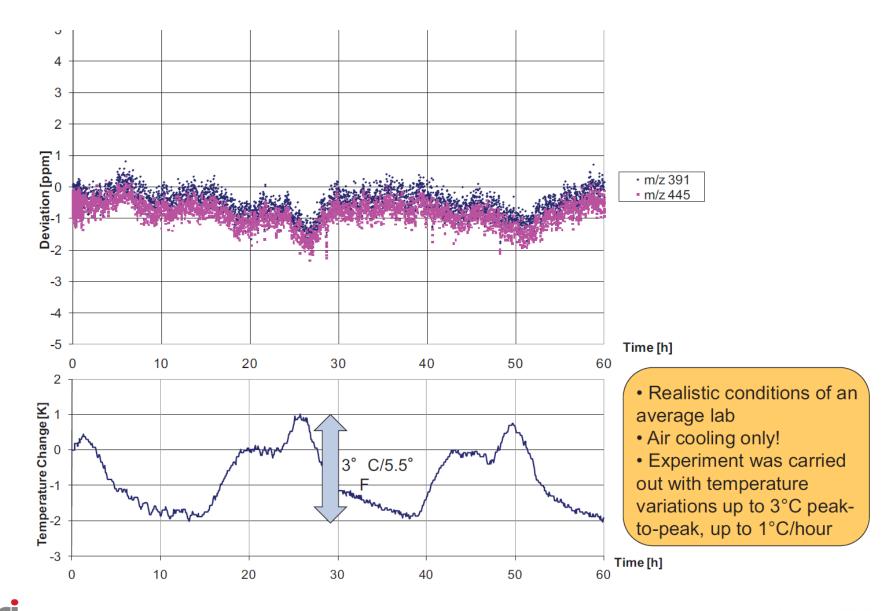

Mass Accuracy [ppm]

SOC

Average Isotope Ratio Variation


pg on column	Standards Apple juice		Baby food	Yogurt	Formula	
A + 1						
Q-Exactive, Overall:	1.69 ± 2.30					
10	1.95 ± 2.26	3.17 ± 3.27	3.67 ± 3.33	3.21 ± 2.83	2.18 ± 1.69	
100	2.61 ± 4.81	1.95 ± 1.98	1.91 ± 2.19	1.95 ± 1.87	2.10 ± 2.08	
500	0.86 ± 0.96	1.07 ± 1.05	1.07 ± 1.18	1.26 ± 1.47	1.18 ± 1.36	
2000	1.02 ± 1.79	0.75 ± 0.96	0.89 ± 1.34	0.74 ± 0.97	0.66 ± 0.89	
MaXis, Overall: 5.01	± 7.53					
10	9.20 ± 7.07	13.47 ± 9.06	15.30 ± 11.03	11.78 ± 7.62	11.49 ± 9.44	
100	4.85 ± 6.66	7.78 ± 13.99	6.79 ± 7.02	6.94 ± 7.91	5.99 ± 6.25	
500	3.05 ± 6.45	5.22 ± 9.58	3.30 ± 3.85	3.23 ± 3.79	3.33 ± 4.34	
2000	1.77 ± 2.36	2.79 ± 6.28	2.13 ± 3.13	1.88 ± 2.56	2.03 ± 2.62	
A + 2						
Q-Exactive, Overall:	1.59 ± 4.33					
10	5.31 ± 18.09	3.36 ± 5.42	4.38 ± 9.08	5.15 ± 6.56	6.44 ± 5.03	
100	1.75 ± 3.01	1.93 ± 2.91	2.24 ± 4.60	1.70 ± 2.37	1.57 ± 1.86	
500	1.03 ± 1.26	0.91 ± 0.62	0.86 ± 0.59	1.05 ± 0.81	1.22 ± 1.94	
2000	0.81 ± 1.05	0.86 ± 1.20	0.73 ± 0.56	0.82 ± 0.57	0.74 ± 0.53	
MaXis, Overall: 3.67						
10	10.96 ± 9.71	12.89 ± 6.70	19.43 ± 38.22	11.21 ± 5.68	14.92 ± 7.62	
100	3.55 ± 4.75	6.09 ± 6.85	6.73 ± 7.02	4.67 ± 4.46	5.22 ± 5.24	
500	2.13 ± 3.14	4.02 ± 7.02	3.02 ± 3.17	3.01 ± 4.27	2.78 ± 3.38	
2000	1.24 ± 2.06	2.23 ± 4.56	1.69 ± 2.36	1.68 ± 2.57	1.94 ± 3.21	

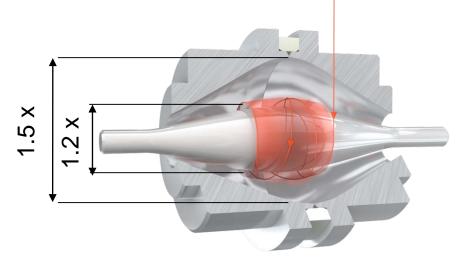
Mass Accuracy

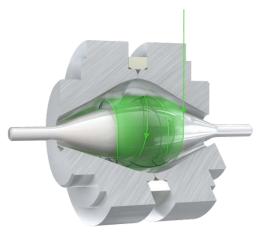

Resolving Power and Mass Accuracy

Long-term mass accuracy with external calibration

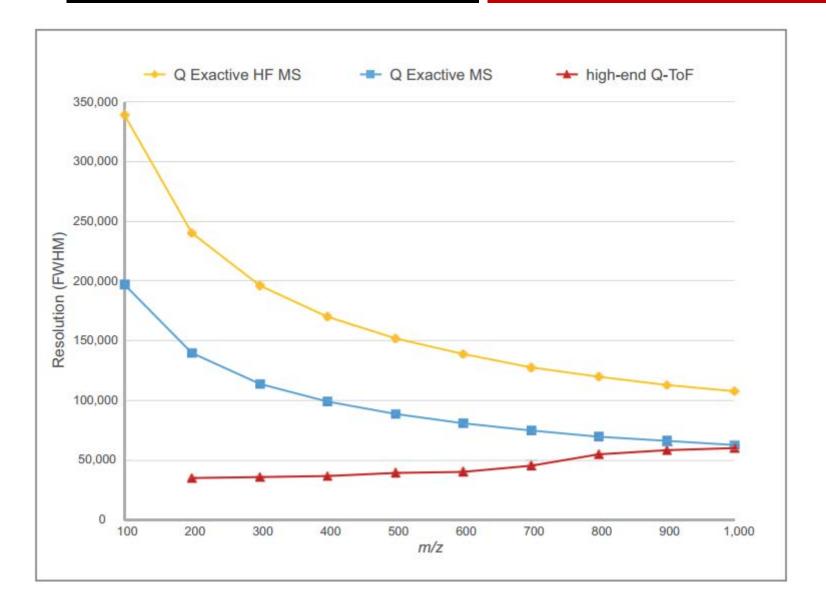
pec

- Easy method development for multi-residue analysis especially in complex matrices
- Easy troubleshooting with detection of all adducts, degradation and contaminants
- Higher detection specification
- Simultaneous Qual and Quan analysis

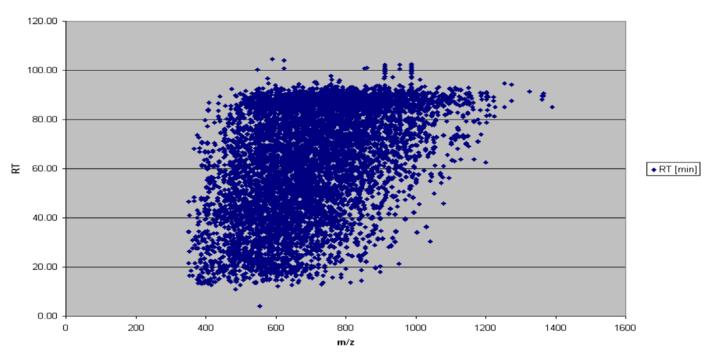

	Orbitrap	QQQ	Q-TOF
Sensitivity			
Resolution			
Identification			
Unknowns			
Selectivity			
Quantitation			
Retrospective data mining			
Ease of troubleshooting			
Cost			


- High isolation power for higher discrimination
- High precision for accurate mass identification
- High resolution for more identification
- High mass stability for a long lasting mass calibration
- MSⁿ
- Library availability for easy interpretations

Orbitrap Analyzer - the 'Heart' of a Mass Spectrometer


Standard Orbitrap

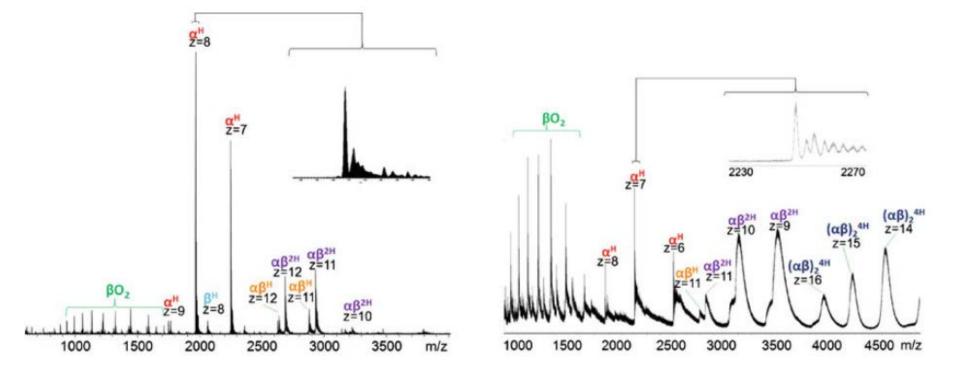
High-field Orbitrap



Resolution VS m/z

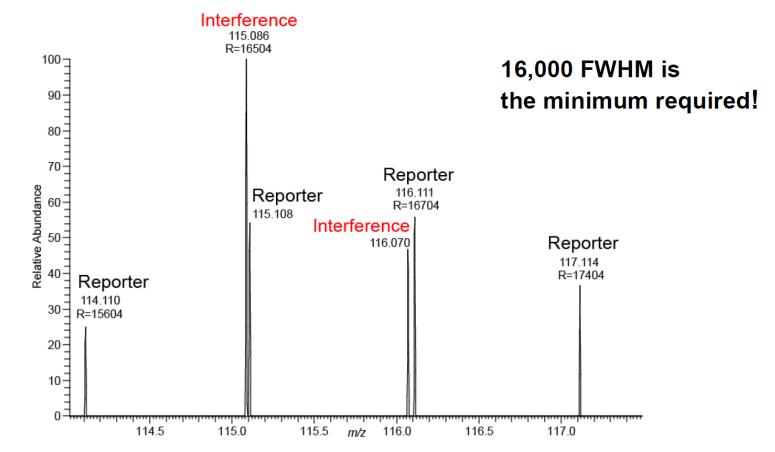
Sci Spec

Peptide ID Distribution of Precursors from LC/MS of E. Coli digest



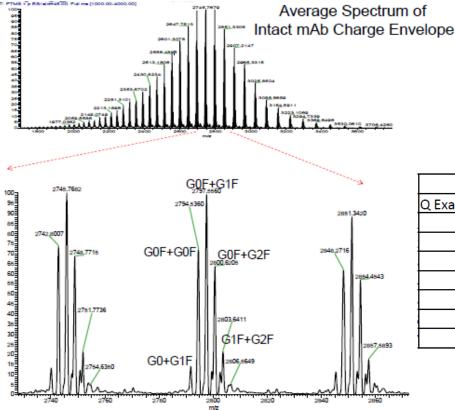
Parent Ion m/z

- 85% of the peptide parent ions (precursors) are below *m/z* 800
- Most of the chemical interferences are below *m*/*z* 600
- The highest resolution is needed below *m/z* 800 where Orbitrap technology has it and TOF technology doesn't!



Orbitrap VS QToF

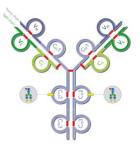
Labelling Techniques


- Isobaric labeling techniques (iTRAQ, TMT) need high resolution at low masses
- Chemical interferences are common when using <u>collision cells</u>!

Your Scientific Specialist

Intact Protein Analysis

- Complete charge state envelope of IgG 'Humira'
- Major glycosylation forms are baseline separated

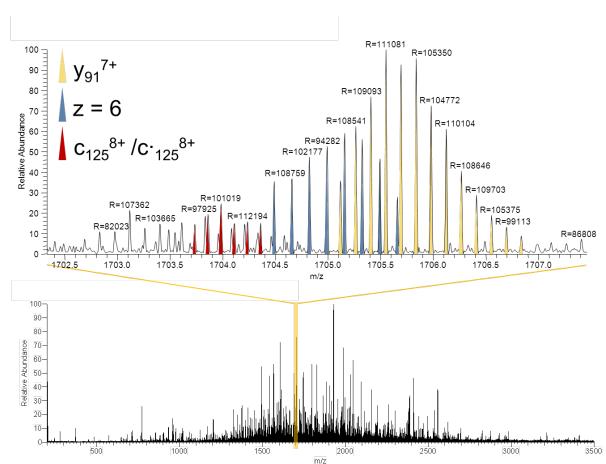


• Relative intensity reproducibility within a few percent

	Relative abundances								
Q Exactive	G0+G0F	G0F+G0F	G0F+G1F	G0F+G2F	G1F+G2F				
1	12.9	74.1	100.0	67.0	23.4				
1	12.3	76.0	100.0	71.4	29.8				
1	12.0	72.8	100.0	66.2	22.0				
1	12.2	75.0	100.0	67.0	23.6				
2	12.7	75.7	100.0	63.6	21.6				
2	13.2	75.4	100.0	64.8	21.0				
2	12.9	76.6	100.0	64.7	21.6				

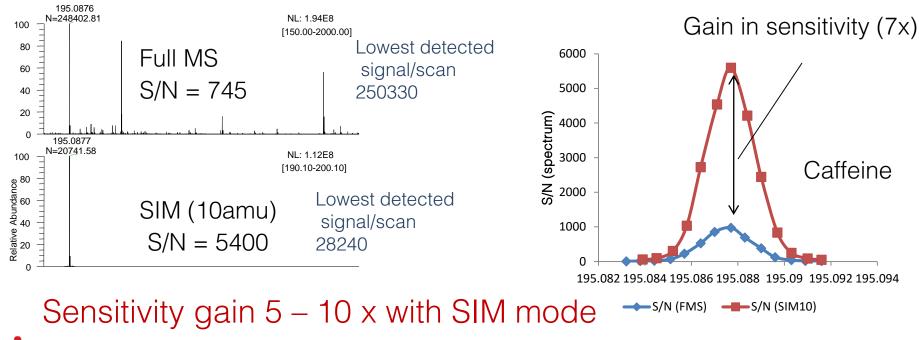
Intact Protein Analysis

- Mass measurement accuracy
- Average error for 34 measurements 6.9 ppm
- Standard deviation 6.4 ppm

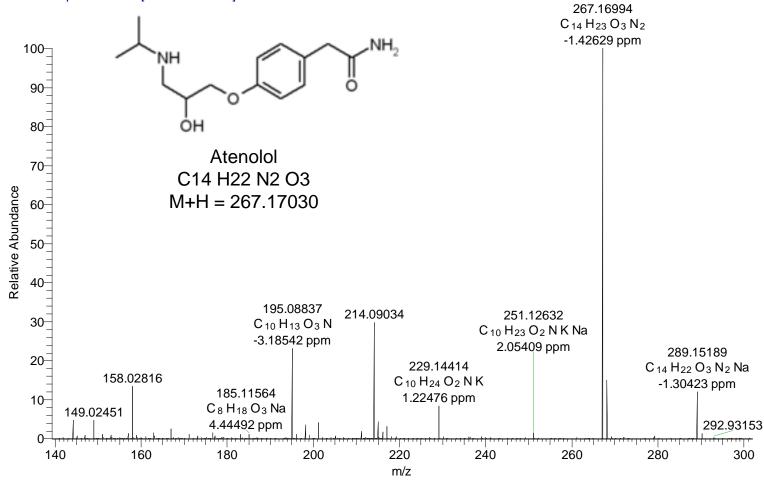

		ppm mass measurement errors								
Q Exactive		G0+G0F	G0F+G0F	G0F+G1F	G0F+G2F	G1F+G2F				
	1	-10.5	0.7	-10.5	-13.8	-18.0				
	1	-3.2	-4.3	-6.9	3.2	N/A				
	1	-11.6	-1.1	- <mark>8.</mark> 8	-11.2	-12.0				
	1	5.1	-5.0	-2.6	5.1	5.6				
	2	-14.3	3.0	-6.9	-5.4	-5.9				
	2	-8.6	-2.2	-12.2	-12.5	-12.9				
	2	-14.3	-6.6	-12.3	-14.8	-10.1				

Confirmation of protein primary structure

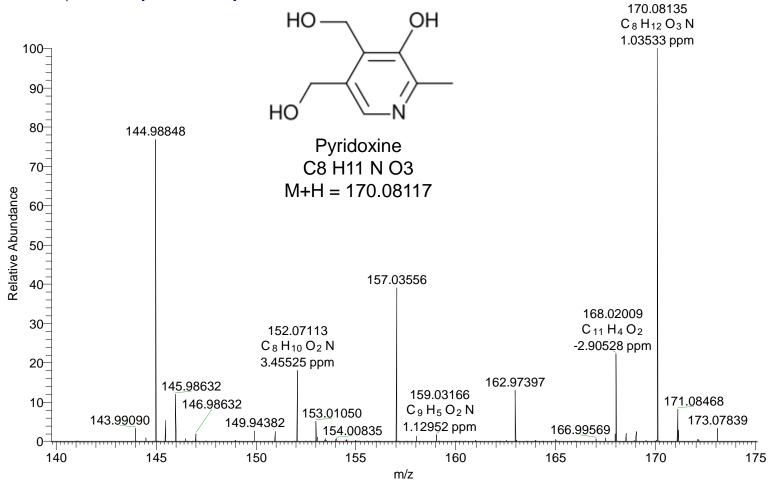
Sequence Confirmation of mAB


- ETD fragmentation of an intact IgG 'Humira'
- Resolution settings 240,000 for fragment detection
- Increased sequence coverage
- Localization of modifications (deamidation)

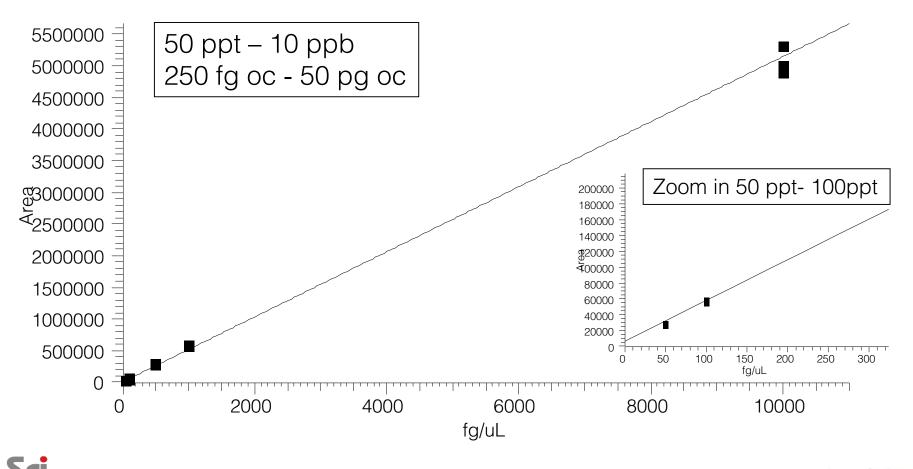
What do we gain by selected ion monitoring?

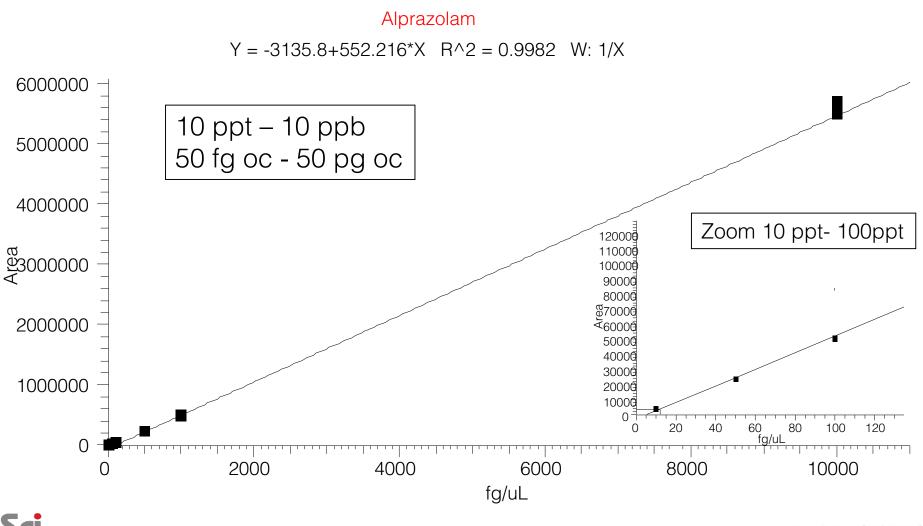

- Signal visibility is dependent, whether a signal is visible above the spectrum noise
- Spectrum noise is dependent on the ratio of compound within a certain ion population

Full Scan Spectrum of Atenolol


AZ_1000ng_ml_100k_1e6_HypersilGoldPFP #246 RT: 3.46 AV: 1 SB: 1 3.25 NL: 1.36E6 T: FTMS + p ESI Full ms [140.00-1800.00]

Full Scan Spectrum of Pyridoxine


AZ_1000ng_ml_100k_1e6_HypersilGoldPFP #92 RT: 1.27 AV: 1 SB: 1 1.04 NL: 1.86E6 T: FTMS + p ESI Full ms [140.00-1800.00]



spec

spec

A Switch is on from QqQ to Orbitrap

Q Exactive Focus quadrupole-Orbitrap MS

TSQ Endura triple quadrupole MS

TABLE 6. Accuracy (% recovery, NIST standard concentration ng/mL) using PRM.

	250H D2	250H D3	epi-25OH D3
Level 1	BQL (0.54)	108 (28.8)	103 (1.84)
Level 2	BQL (0.81)	110 (18.1)	90.7 (1.29)
Level 3	97 (13.3)	104 (19.8)	114 (1.18)
Level 4	BQL (0.55)	106 (29.4)	90.9 (26.4)

TABLE 7. Accuracy (% recovery) using SRM.

	250H D2	25OH D3	epi-25OH D3
Level 1	BQL	93.4	BQL
Level 2	BQL	102	BQL
Level 3	92.7	105	BQL
Level 4	BQL	98	100

TABLE 1. Linearity range (ng/mL)

	250	H D2	25OH D3	epi-2	epi-25OH D3		
PRM	1-1	100	1-100	1	-100		
SRM	2-1	100	2-100	2	2-100		
	Amo	Butalbital	Pento	Pheno	Seco		
PRM	5-2000	5-2000	5-2000	25-2000	5-2000		
SRM	10-2000	5-2000	10-2000	25-2000	5-2000		

TABLE 2. Inter-assay precision (% RSD, concentration ng/mL) using PRM (n=15). BQL, below quantitation limit.

	250H D2	250H D3	epi-25OH D3
QC0	BQL	6.4 (8.4)	BQL
QC1	5.3 (6.0)	4.1 (14.4)	4.4 (6.6)
QC2	3.1 (15.0)	3.2 (23.4)	2.9 (15.6)
QC3	4.2 (50.0)	3.5 (58.4)	2.5 (50.6)

TABLE 3. Inter-assay precision (% RSD, concentration is the same as above) using SRM (n=15).

	250H D2	250H D3	epi-25OH D3
QC0	BQL	7.6	BQL
QC1	7.6	8.6	6.9
QC2	6.4	4.8	9.4
QC3	5.2	3.4	6.9

Biocrates – 188 Metabolites

Key Features

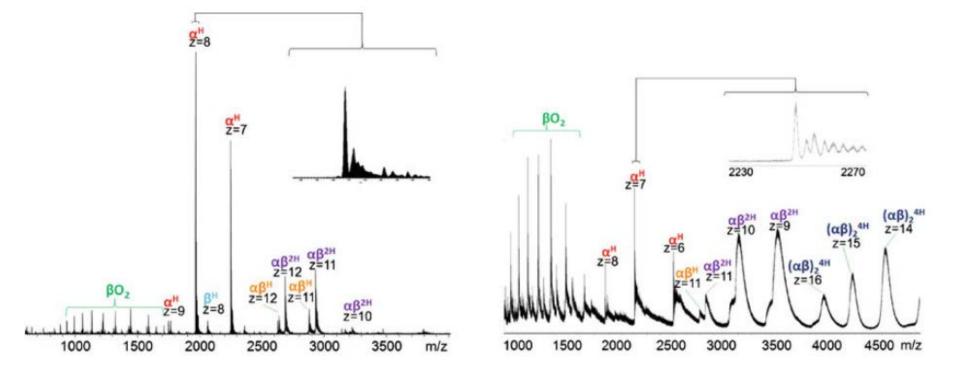
Quantification of up to 188 Metabolites from Key Metabolite Classes

Metabolite Coverage									
 Amino acids (21) Biogenic amines (21) 	 Hexose (1) Acylcarnitines (40) 	 Lysophosphatidylcholines (14) Phosphatidylcholines (76) Sphingolipids (15) 							
	Kit Components								
 Reagents & Consumables Patented 96-well filter plate Internal & calibration standards Quality controls Testmix 	 Methods & Protocols Sample preparation protocol Instrument-specific acquisition & quantification methods System suitability test 	 Workflow Manager Met/DQ™ Process guidance Automated technical validation Basic statistics (optional) 							
		N(CH_)2							
	Instrument Platforms*								
Waters Xevo TQ-XS UHPLC Waters Xevo TQ-S UHPLC Waters Xevo TQ-S micro UHPLC	 SCIEX 6500+ (U)HPLC SCIEX 6500 (U)HPLC SCIEX 5500 (U)HPLC SCIEX 4500 (U)HPLC SCIEX 4000 HPLC 	Thermo TSQ Vantage (U)HPLC							

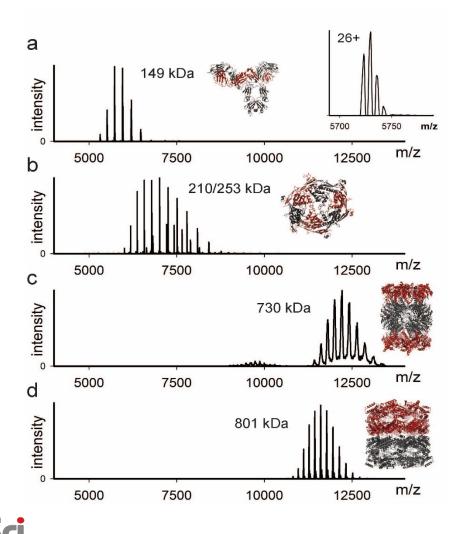
Biocrates – ONLY Orbitrap 408 Metabolites

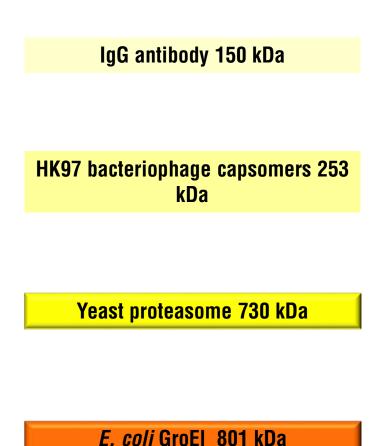
The Absolute/DQ[®] p400 HR Kit is a complete solution for broad lipid and metabolic profiling on high resolution, accurate mass (HRAM) Q ExactiveTM mass spectrometers. It provides quantification of a large range of analytes, with high inter-laboratory, inter-instrument and longitudinal reproducibility.

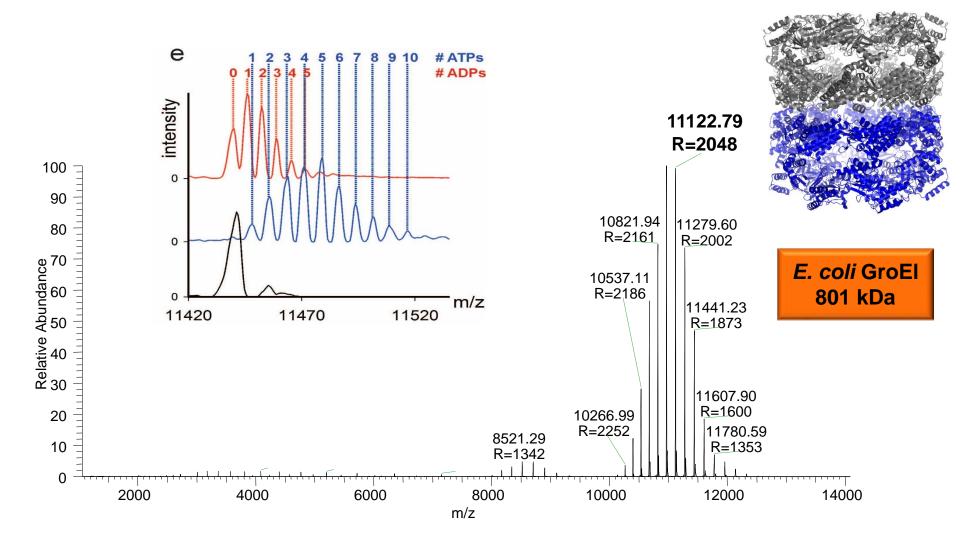
Tha kit covers up to 408 metabolites from 11 metabolite classes, which are known to be relevant in a multitude of pathophysiological processes:


Small Molecules Amino Acids Biogenic Amines Hexoses Polar Lipids Phosphatidylcholines Lysophosphatidylcholines Sphingomyelins Ceramides Neutral Lipids Acylcarnitines Diglycerides Triglycerides Cholesteryl Esters

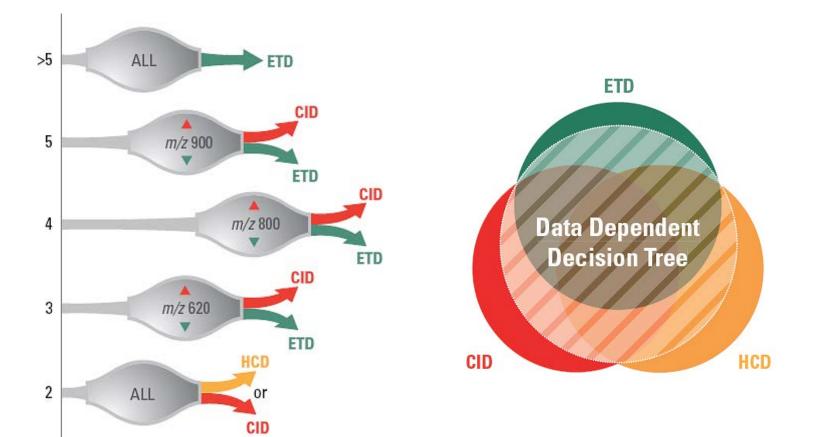
- High isolation power for higher discrimination
- High precision for accurate mass identification
- High resolution for more identification
- High mass stability for a long lasting mass calibration
- MSⁿ
- Library availability for easy interpretations


Orbitrap VS QToF

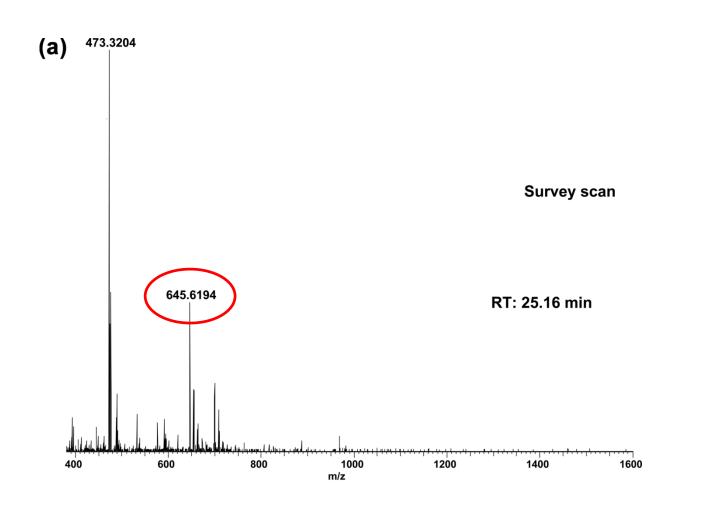



Analysis of Protein Complexes

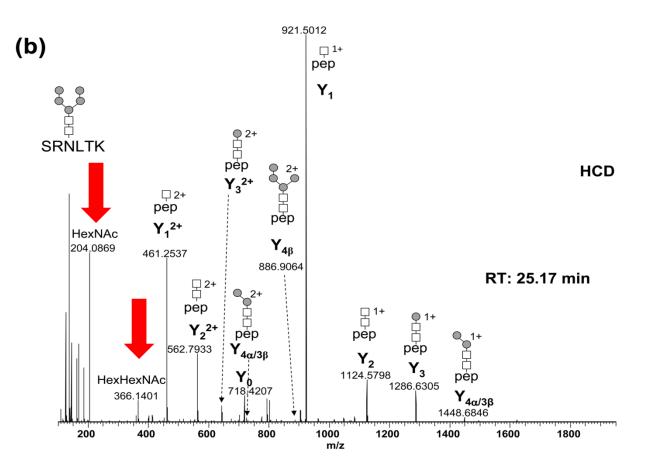
- Extending the mass range
- Protein assemblies up to 1 million Da

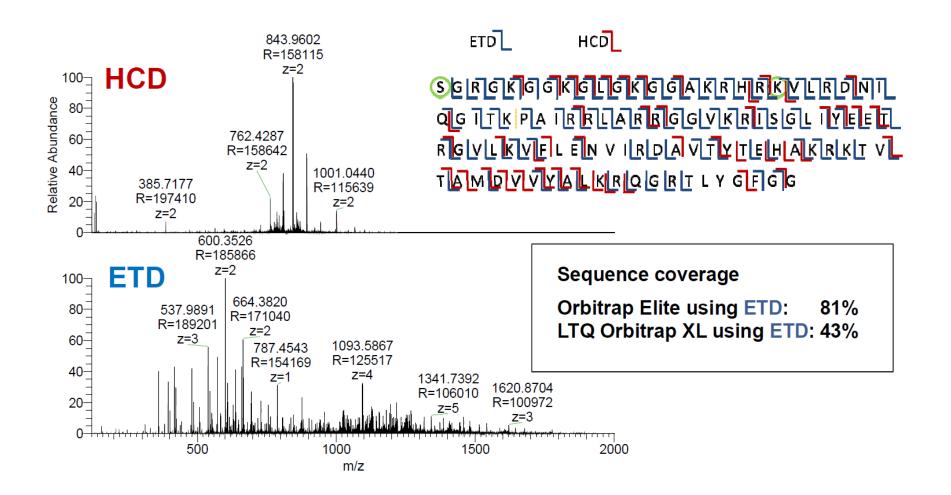

Ligand Binding Stoichiometry

Data Dependent Decision Tree


• Decision tree-driven tandem mass spectrometry for shotgun proteomics

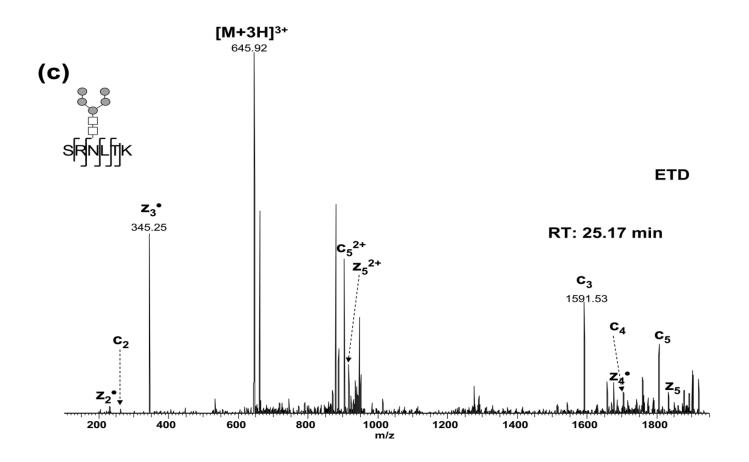
Product Dependent Trigger


• ZIC HILIC separation of a glycoprotein digest


Product Dependent Trigger

- HCD fragmentation spectrum of *m/z* 645.6194
- Oxonium ions observed among top 20 peaks

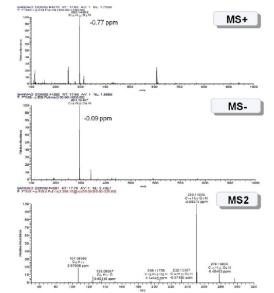
Sci Spec


Extended Top-down Capability

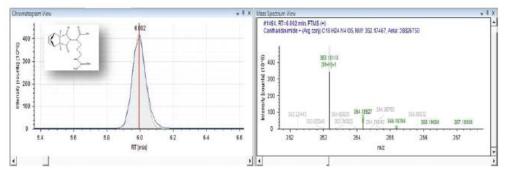
Sci Spec

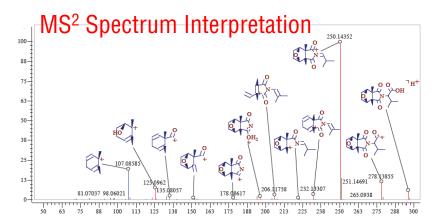
Product Dependent Trigger: HCD PD ETD

- ETD fragmentation triggered
 - Peptide sequence information
 - Glycosylation site localization



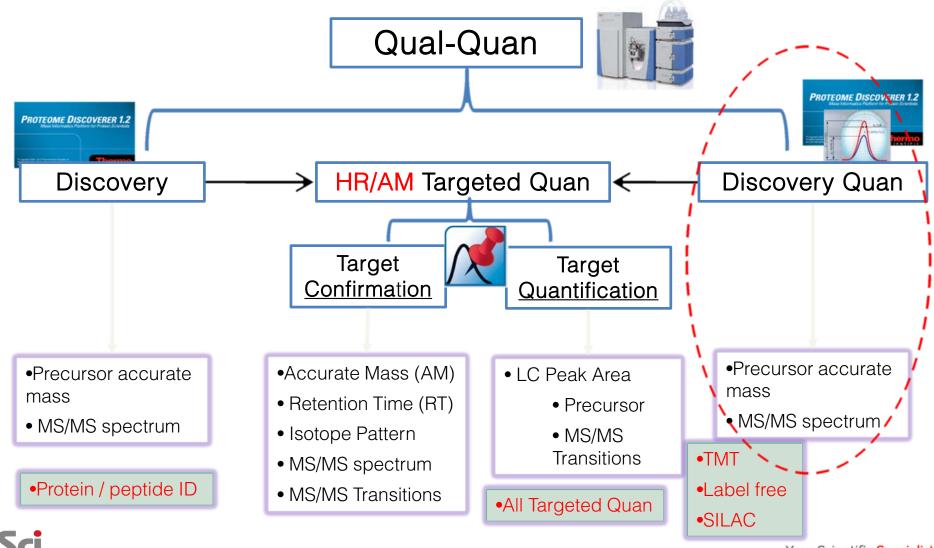
Structural Elucidation

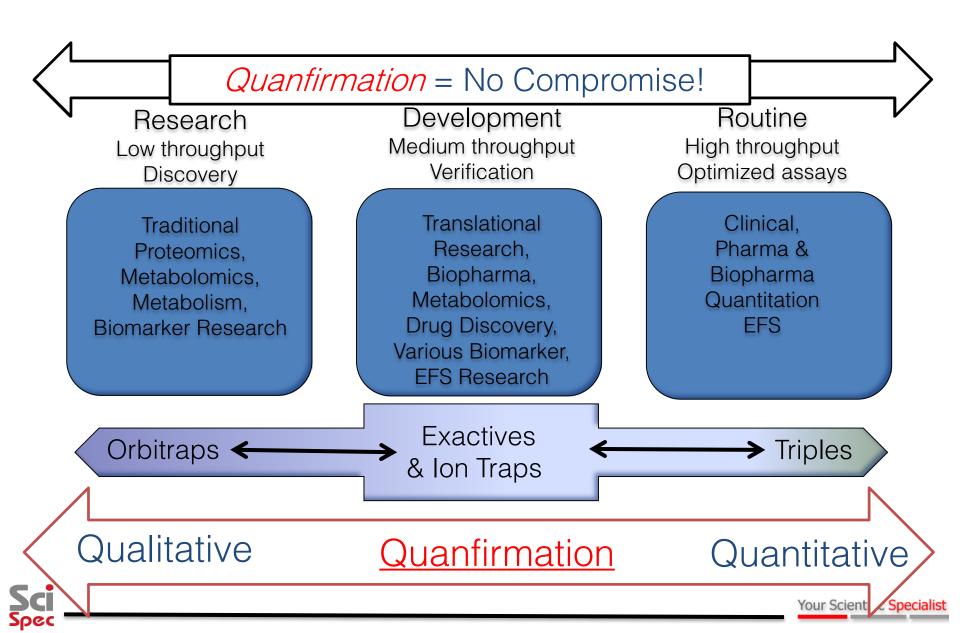

Discovery and Characterization of Components



MS and MS² Spectrum

Extracted Ion Chromatogram and Isotopic Pattern


The orbitrap provides reproducible high resolution accurate mass with superior U-HPLC compatibility at resolution unattainable by QTOFs without compromising the sensitivity and dynamic range in MS or MS-MS data. With orbitrap, you will have fewer false positives, higher quality, better accuracy and more confidence in your quan/qual measurements.

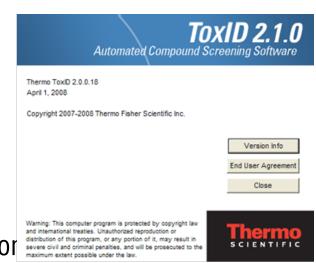

nriOl

From Discovery to Quantification - do it all with a Q Exactive

Spec

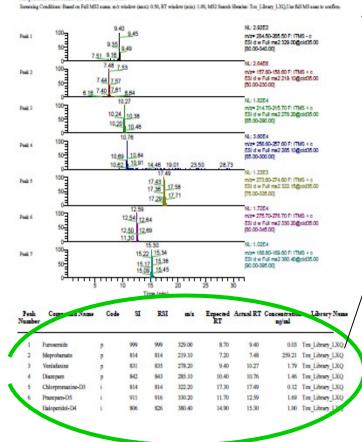
Range of Experiments

Linearity and Precision


Milk Samples		Non	Fat			Low F	at (2%) Whole Fat				
Fortification Levels	50	100	250	500	50	100	250	500	50	100	250	500
Sulphamethazine		0.99	964			0.9	9908			0.	9970	
(RSD %)	2.4	7.2	4.9	2.4	6.6	14.5	5.2	5.6	8.9	1.2	5.1	n/a
Oxytetracycline		0.99	906			0.9	9931			0.	9909	
(RSD %)	2.7	11.4	11.4	5.5	11.6	11.8	5.9	4.2	9.2	12.9	4.9	2.6
Tetracycline		0.99	923			0.9	9948			0.	9903	
(RSD %)	6.2	6.4	5.4	3.7	7.3	4.8	5.9	4.5	4.1	9.5	6.5	5.5
Enrofloxacin		0.99	969		0.9969			0.9973				
(RSD %)	9.2	7.9	2.3	0.8	11.1	1.4	1.4	3.1	6.9	8.3	3.0	n/a
Difloxacin		0.99	958		0.9907			0.9968				
(RSD %)	12.2	4.3	6.0	2.4	10.8	4.6	2.7	5.5	2.6	6.1	5.1	n/a
Spiramycin		0.99	920		0.9740			0.9951				
(RSD %)	11.1	11.8	8.4	4.1	10.9	4.0	10.0	9.4	13.3	6.5	5.2	0.2
Albendazole		0.99	984		0.9967				0.	9928		
(RSD %)	1.6	1.7	1.7	2.7	6.3	3.2	3.6	4.2	2.6	6.2	1.2	2.9
Phenylbutazone		0.99	947		0.9922			0.9663				
(RSD %)	2.9	3.3	0.8	2.6	8.1	4.1	4.9	3.1	0.6	0.9	0.7	0.3
Salinomycine Na		0.99	993		0.9966			0.9984				
(RSD %)	1.2	0.7	1.2	1.5	1.5	0.8	3.1	0.4	2.8	3.1	1.3	1.2

Stolker, A.A.M. et al; Anal. and Bioanal. Chem. 2010 accepted for publication

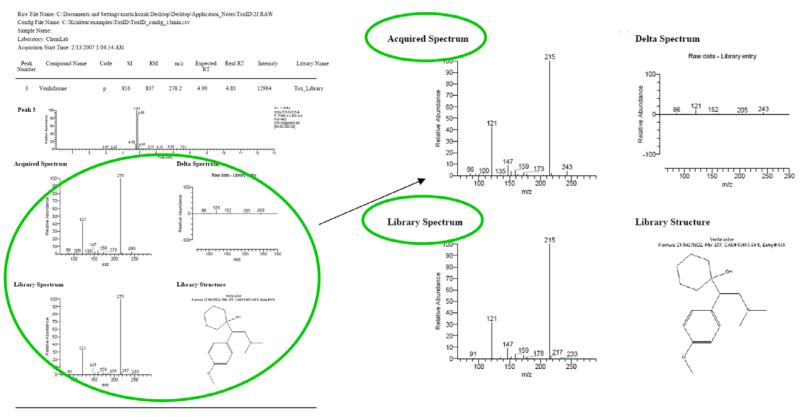
Drug identification using ToxIDTM2.1.0


- Fully automated analysis and reporting
- Drug identification based on
- Molecular weight
- MS2 spectra
- Chromatographic retention time
- Built-in library of about 300 drugs
- Library spectra acquired under real world condition for robust and accurate ID
- The software uses proven NIST search engine
- Feature to easily create and expand library
- Excellent results review and reporting
- Summary report
- Data review report
- Excel spreadsheet

ToxID Summary Report

Your Company Summary Report

Raw File Name: C./Documents and Settings/benedicte durets/Mes documents/My Data/ClinicalToxicologyForensic/Toxicology Config File Name: C/Documents and Settings/benedicte.duretz/Mes documents/My Data/ClinicalToxicology/Forensie/Toxicology Sample Name: Laboratory: Acquistion Start Time: 21/11/2008 11:43:54



Spec

Peak Number	Compound Name	Code	SI	RSI	m/z	Expected RT	Actual RT	Concentration ng/ml	Library Name
1	Furosemide	р	999	999	329.00	8.70	9.40	0.03	Tox_Library_LXQ
2	Meprobamate	р	814	814	219.10	7.20	7.48	259.21	Tox_Library_LXQ
3	Venlafaxine	p	831	835	278.20	9.40	10.27	1.79	Tox_Library_LXQ
4	Diazepam	p	842	843	285.10	10.40	10.76	1.46	Tox_Library_LXQ
5	Chlorpromazine-D3	i	814	814	322.20	17.30	17.49	0.12	Tox_Library_LXQ
6	Prazepam-D5	i	911	916	330.20	11.70	12.59	1.69	Tox Library LXQ
7	Haloperidol-D4	i	806	826	380.40	14.90	15.30	1.00	Tox_Library_LXQ
)	100 80 40 20 2.43 0 100 80 60 40 20 2.43		Multur	12.61 <u>13</u>	18.23	UNUM	1 29	30,23 29,98 28,95 NL 1. Th +40 mm 1. Th +10 mm 1. Th -10 mm 1. Th -10 mm 1. Th -10 mm 1. Th -10 mm 1. 20 29,98 28,95 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	30E0 ESI Full 5 3.00] 24E7 C F: ITMS ESI Full

ToxID Review Report

Company Name ToxID Long Report

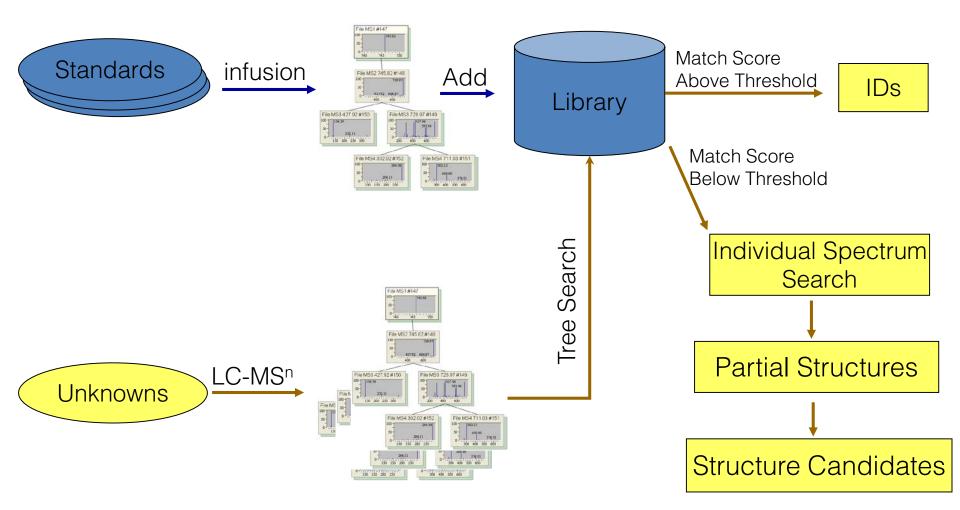
Page 3 of 8

What is Mass Frontier?

- Software for small molecule structural elucidation via mass spectral interpretation
 - Predict fragmentation given a compound structure
 - Annotate spectra with fragment structures
 - Store MSⁿ spectra along with structures, peak annotations, ID numbers, pathway information, etc
 - Match unknown spectra against library entries
 - And MUCH more...

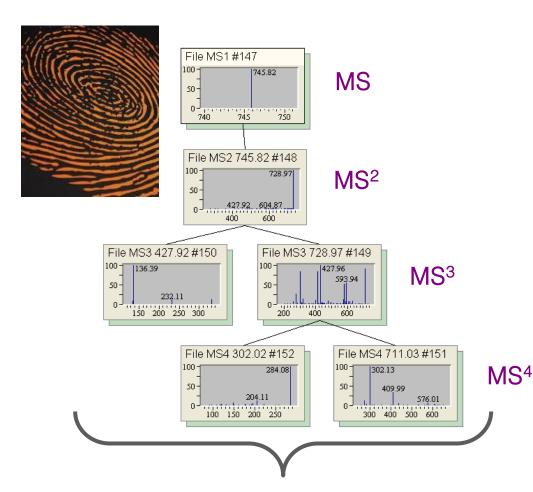
Tag Line:

Mass Frontier helps you to go from SPECTRA



Who should get Mass Frontier?

- Anyone who is doing small molecule structural elucidation / confirmation via mass spectrometry
- Examples:
 - Metabolite Identification in Drug Metabolism
 - Impurity and Degrading analysis in QC/QA
 - Endogenous Metabolite Identification in Metabolomics
 - Forensic Analyses in Federal and State Agencies
 - Doping Control in Horse Racing
 - Chemistry/Biochemistry/Pharmacy Departments in Universities doing small molecule research
 - Service labs for synthetic chemists



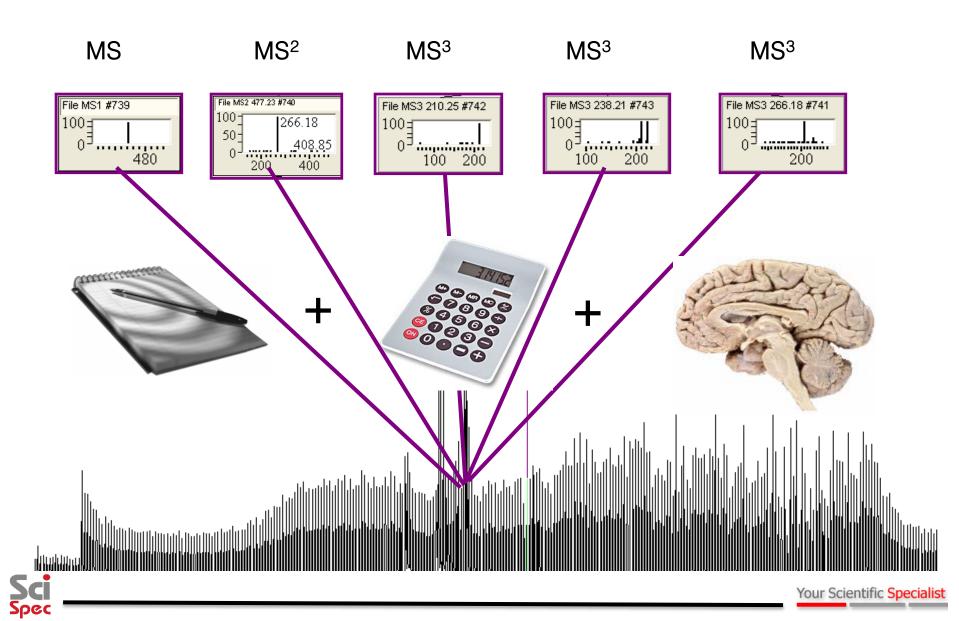
General Unknown Screening using Mass Frontier

Sheldon et al. Determination of Ion Structures in Structurally Related Compounds Using Precursor Ion Fingerprinting. JASMS, **2009**, 20, 370-376

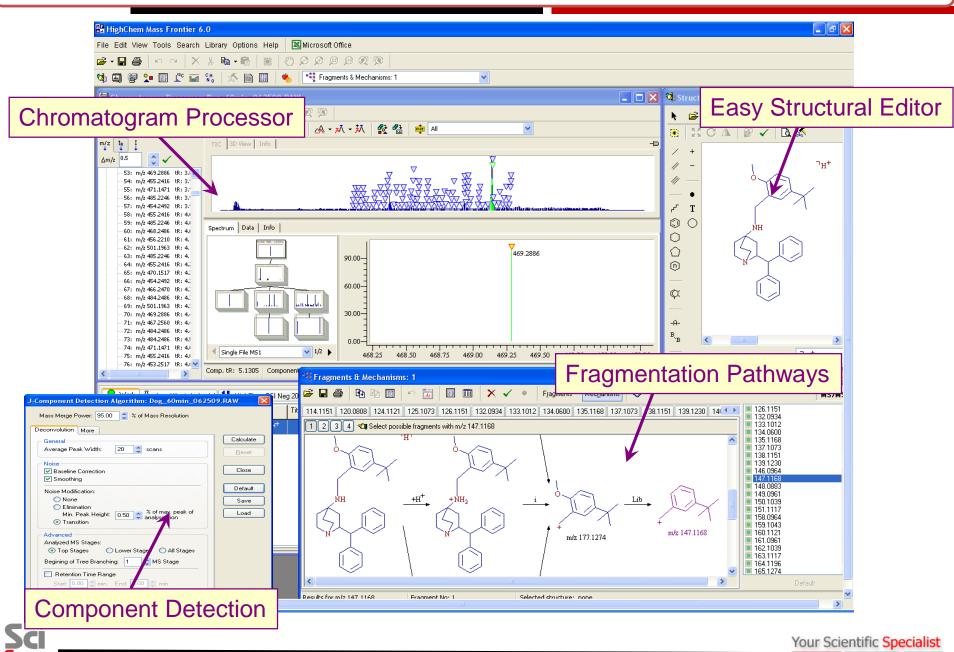
Spec

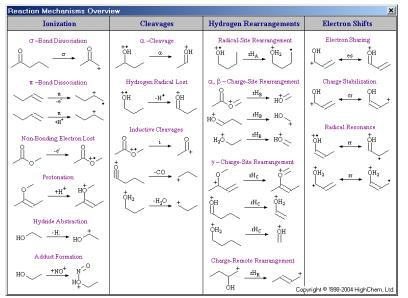
Accurate mass information is powerful – provides a potential formula

However MSⁿ information still necessary to distinguish between structural isomers


Trees can automatically be generated by Data Dependant LC-MS/MS runs on our instruments

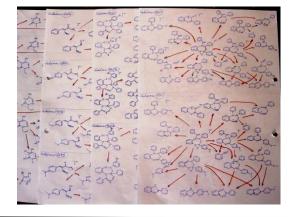
Component Detection from Mass Frontier can automatically deconvolute MSⁿ spectral trees!


This information collectively, <u>uniquely</u> defines the structure of the molecule


How Do You Get a Structure From MS Data?

Mass Frontier: Toolbox for Structural Elucidation

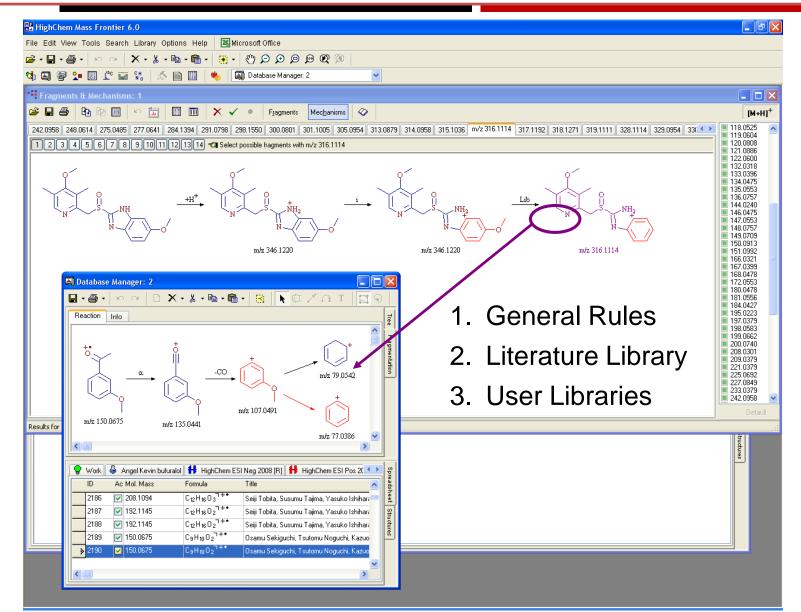
1. General fragmentation rules



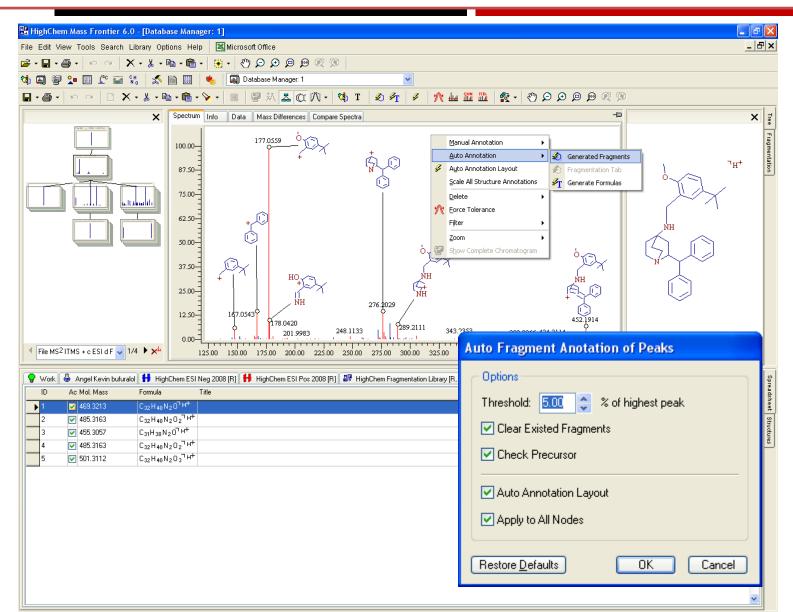
2. Mass Frontier Fragmentation Library™

Total number of	Mass Frontier 6.0
Fragmentation Schemes	30.936
Individual Reactions	129.229
Chemical Structures	151.762
Decoded Mechanisms	120.029

3. User Libraries

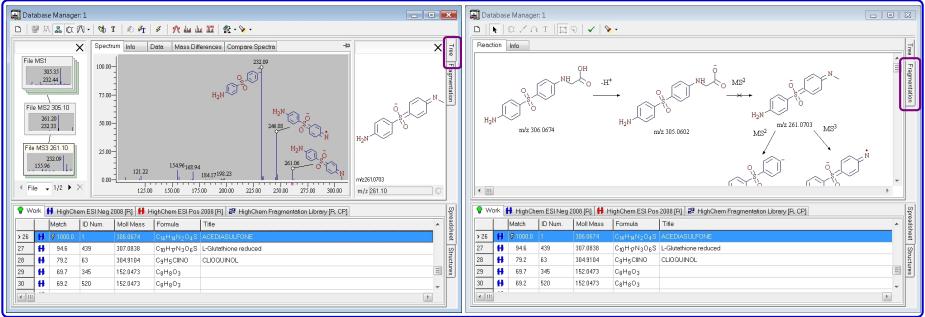

Fragmentation Library[™] in 6.0 now covers >99% published literature

	Source	Volume	Year
1.	JASMS (Journal of the American Society for Mass Spectrometry)	1-17	1990-2006
2.	IJMSIP (International Journal of Mass Spectrometry and Ion Physics)	1-53	1968-1983
	IJMSIP (International Journal of Mass Spectrometry and Ion Processes)	54-175	1983-1998
	IJMS (International Journal of Mass Spectrometry)	176-255	1998-2006
3.	RCM (Rapid Communications in Mass Spectrometry)	1-20	1987-2006
4.	JMS (Journal of Mass Spectrometry)	30-41	1995-2006
5.	OMS (Organic Mass Spectrometry)	1-29	1968-1994
6.	JMSSJ (Journal of the Mass Spectrometry Society of Japan)	11-27 29-30 37-48 50-53	1964-1979 1981-1982 1989-2000 2002-2005
7.	MSR (Mass Spectrometry Reviews)	1-25	1981-2006
8.	EJMSBMER (European Journal of Mass Spectrometry in Biochemical, Medicine, and Environmental. Research)	1-2	1980-1982
9.	BMS (Biomedical Mass Spectrometry) BEMS (Biomedical and Environmental Mass Spectrometry)	1-12 14-19	1974-1985 1987-1990
	BMS (Biological Mass Spectrometry)	20-23	1991-1994
10.	JC (Journal of Chromatography)	181-536	1980-1991
11.	EJMS (European Journal of Mass Spectrometry)	4	1998



Predictive Fragmentation

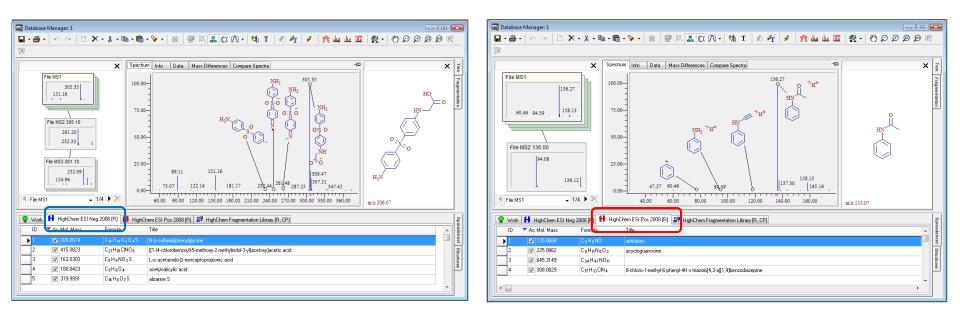
How Do I Annotate Spectral Trees? ... Automatically



Database Manager: Integrated Knowledge

Management

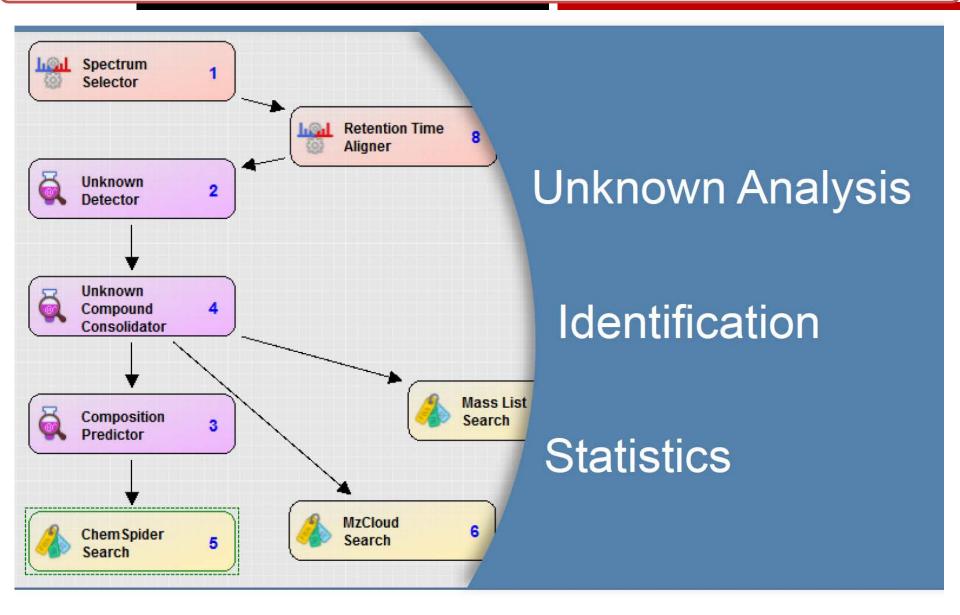
- > All records of installed libraries are shown in Database Manager
- > All records are accessible without querying
- Spectral and Fragmentation libraries are unified in Database Manager
- Searches are universal, independent of data type (structures, m/z values, names, CAS number, biological activity, etc)


One Record: Spectral tree with corresponding fragmentation mechanisms & more!

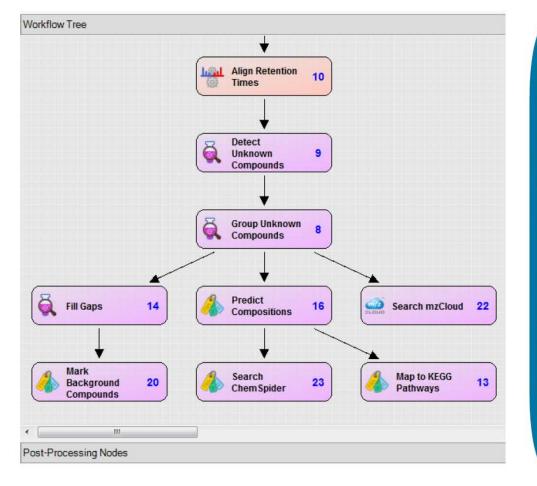
HighChem Spectral Tree Libraries—Free with the

Library: HighChem ESI Neg 2008 Tree Count: 524 Spectra Count: 3805 Fragmentation Schemes: 263

Library: HighChem ESI Pos 2008 Tree Count: 1251 Spectra Count: 10180 Fragmentation Schemes: 702


Common pharmaceutical compounds and human metabolites

Peaks manually annotated and fragmentation mechanism elucidated


software

Compound Discoverer

Sci Spec

Flexible Workflow

-

-

-

Descriptive

Statistics

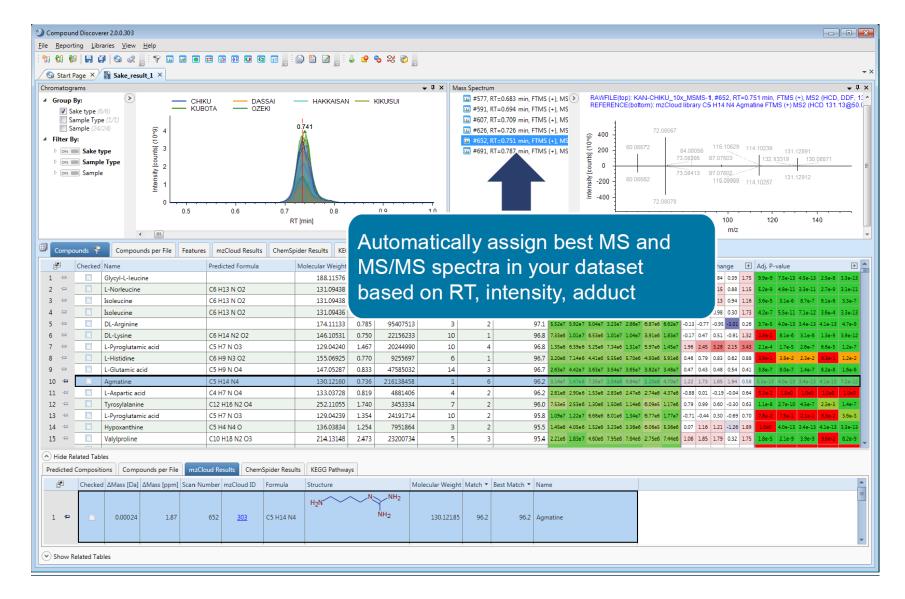
24

• Use common, predefined workflows or create your own

Integrate your own nodes

 New in version 2.0: Nodes for Unknown Detection, Identification, Statistics

Sci Spec ------

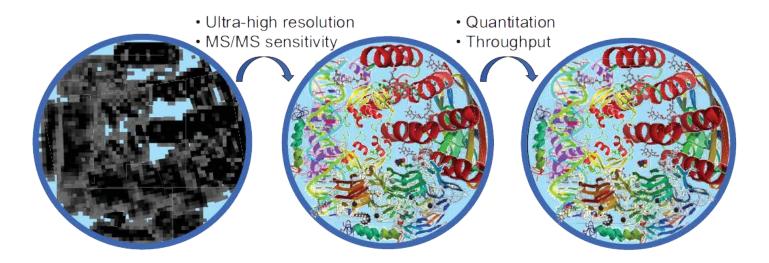


Differential

Analysis

17

Identifying Unknown


Sci Spec

Predicted Composition

Conclusion

- The Orbitrap Mass Analyzer is a new type of mass analyzers with its own unique combination of analytical parameters
- Orbitraps are still evolving...
 - Higher speed
 - Higher resolving power and mass accuracy
 - Higher sensitivity
 - More routine applications
- Exciting new applications continue to emerge

Summary

- High resolution is a key characteristics of MS data enabling
 - Mass accuracy
 - Confident identification
 - Reliable quantitation
- **Data dependent acquisition** offers an elegant simplicity and has proven highly useful for discovery-driven proteomics
- Mass spectrometry technology enables comprehensive analysis of proteomics samples
 - Multiple fragmentation techniques
 - MSⁿ capability
- **Quan&Qual** experiments done on a single platform

