

Authors: Piboon Pornmanee, Jirapinya Liamkraituan, Sirirat Sittiruttanatrigul, Jitnapa Voranitikul, Niramol Jitsommai

Vitamin A and D are essential micronutrients that support numerous physiological functions. Vitamin D plays a key role in promoting the absorption of calcium and phosphorus, which are critical for the development and maintenance of healthy bones and teeth. It helps prevent bone-related disorders such as osteoporosis, especially in older adults. Furthermore, vitamin D is known to modulate immune system activity and has been linked to anti-inflammatory effects in various clinical studies.

Vitamin A, is essential for maintaining visual function, particularly under low-light conditions, and helps prevent night blindness. It also contributes to skin tissue repair, promotes healthy skin, reduces the incidence of acne, and plays a role in supporting immune responses by enhancing the body's defense against infections. Given their vital functions, accurate monitoring of serum Vitamin A and Vitamin D levels is important for clinical assessment and early detection of potential deficiencies or imbalances.

In this study, we established a method for the quantitative analysis of Vitamin D, specifically 25-(OH) D2 and D3 and Vitamin A in human serum using the Liquid Chromatography - Mass Spectrometry (LC-MS/MS), an advanced analytical technique renowned for its high sensitivity and specificity. The developed method delivers accurate, precise, and reproducible results, thereby improving the reliability and efficiency of clinical diagnostics.

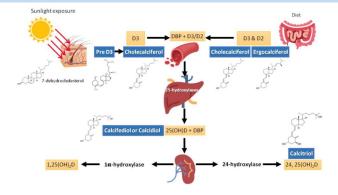


Figure 1 The Mechanism of Vitamin D in the Body and the Measurement of Vitamin D in the Form of 25-(OH)D2/D3

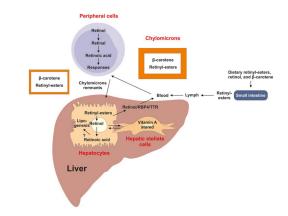


Figure 2. Mechanism of Vitamin A Metabolism in the Human Body and Its Quantification in Serum as Retinol.

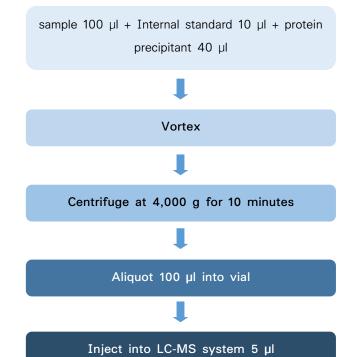
Desorption,	Clean-up	and	LC	Conditions
-------------	----------	-----	----	------------

Analytical Column	Accucore™ C18 (2.1x100mm) 2.6µm
Column temperature	40 °C
Mobile phase	A: 0.1% Formic acid in H2O B: 0.1% Formic acid in Methanol
Data acquisition mode	Selected ion monitoring (SRM)

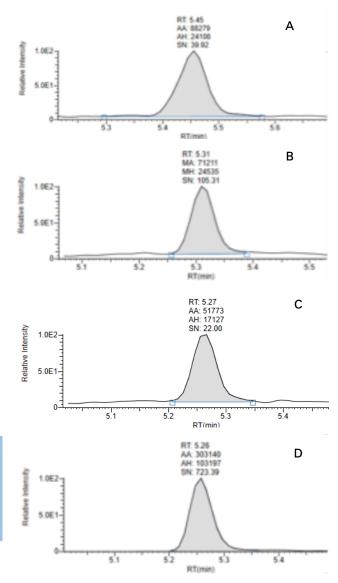
MS Conditions

Ion source type	APCI
vaporizer temperature	350°C
Ion Transfer tube Temp	325°C
Spray voltage	4800 V
Sheath gas and auxiliary	45 and 5
Collision gas (argon) pressure	1.5 mTorr.

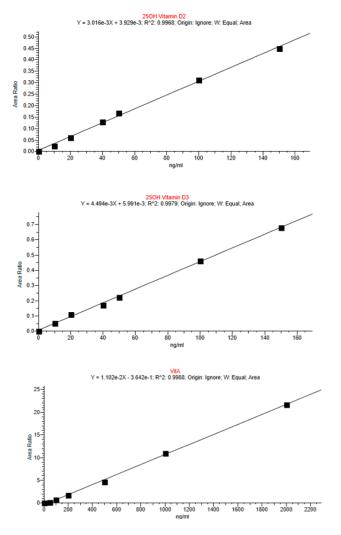
SRM transition and Collision Energy of Compound


Compound	Precursor (m/z)	Product (m/z)	CE(V)
25-Hydroxyvitamin D2	395.3	269.2	19
		377.3	14
25-Hydroxyvitamin D3	383.2	257.2	13
		365.3	12
Retinol	269.2	83.0	15
		93.0	15
25-Hydroxyvitamin D3-d6 (ISTD)	389.3	263.3	11

Sample preparation


Sample preparation was carried out using a protein precipitation technique. A 100 μ L aliquot of serum was spiked with 5 μ L of internal standard solution, followed by the addition of 40 μ L of a protein-precipitating reagent. The mixture was vortexed thoroughly to ensure complete mixing, then centrifuged at 4,000 g for 10 minutes at room temperature. After centrifugation, 100 μ L of the clear supernatant was carefully transferred into a sample vial. A 5 μ L portion of this prepared extract was injected into the LC-MS system for analysis.

(A) Retinol at 5.45 minutes,


- (B) 25-Hydroxyvitamin D2 at 5.31 minutes,
- (C) 25-Hydroxyvitamin D3 at 5.27 minutes, and
- (D) Internal standard (25-Hydroxyvitamin D3-d6) at 5.26 minutes.

Results : Calibration Curve

Acknowledgements

Scientific and Technological Research Equipment Centre Chulalongkorn University (STREC)

References

- https://www.mdpi.com/2218-1989/11/4/255
- https://www.frontiersin.org/files/Articles/1186336/fphar-14-1186336-HTML/image_m/fphar-14-1186336-g002.jpg
- https://www.frontiersin.org/files/Articles/1186336/fphar-14-1186336-HTML/image m/fphar-14-1186336-g002.jpg

Conclusion

An in-house method for the simultaneous quantification of Vitamin A and Vitamin D in human serum was successfully developed using liquid chromatography-mass spectrometry (LC-MS). This approach offers a costeffective solution with the capability to measure three analytes in a single run. The method requires only 100 µL of serum and employs a simple and rapid protein precipitation protocol for sample preparation. With a total run time of just 6 minutes, the method enhances analytical throughput, offering high efficiency, speed, and convenience.

ติดตามแอพพลิเคชั่นอื่น ๆ ได้ที่ https://www.scispec.co.th

บริษัท ซายน์ สเปค จำกัด 10 ซอยกาญจนาภิเษก ซอย 0010 แยกสอง เขตบางแค กทม. 10160 โทร 02 454 8533 A scispec 💿 @scispec

ISSUED: