

Pesticide Residue Screening in Surface Water by Orbitrap™ HRAMS

PRESENTED BY

Tosapol Anukunwithaya, Ph.D. Mass Spectrometry Product Specialist tosapol@scispec.co.th 081-825-2981

Sci Spec Pesticide in Surface Water

Schematic diagram illustrating routes of pesticides

into streams and groundwater.

(Modified from Gilliom and others, 2006.)

Framework for Conducting Pesticide Drinking Water Assessments for Surface Water

The EPA Conceptual Model for Pesticide Fate and Transport to Surface Water

2

Sci Spec Pesticide under the Water Framework Directive

L 226/1

Ι

(Legislative acts)

DIRECTIVES

DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 12 August 2013

amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy

(Text with EEA relevance)

Among 45 controlled substances there are several pesticides (maximum allowable concentration):

- alachlor (0.7 µg L⁻¹)
- aclonifen (0.012 μ g L⁻¹)
- atrazine (2 µg L⁻¹)
- bifenox (0.004 µg L⁻¹)
- chlorfenvinphos (0.3 µg L⁻¹)
- chlorpyrifos (0.1 μ g L⁻¹)
- cybutrine (0.016 µg L⁻¹)
- cypermethrin (6 \times 10⁻⁵ µg L⁻¹)
- dichlorvos (7 × $10^{-5} \mu g L^{-1}$)
- diuron (1.8 µg L⁻¹)
- endosulfan (0.004 μ g L⁻¹)
- heptachlor (3 \times 10⁻³ µg L⁻¹)
- isoproturon (1 μ g L⁻¹)
- quinoxyfen (0.54 μ g L⁻¹)
- simazine (4 µg L⁻¹)
- terbutryn (0.034 µg L⁻¹)

Sci Spec Publication in Pesticide Residue Screening

Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-Orbitrap high resolution tandem mass spectrometry

J. Casado^{*}, D. Santillo, P. Johnston

Greenpeace Research Laboratories, College of Life and Environmental Sciences, Innovation Centre Phase 2, University of Exeter, Exeter, United Kingdom

Sci Spec Mass Analyzer : Orbitrap™ Technology

Anal. Chem. 2000, 72, 1156-1162

Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis

Alexander Makarov*

HD Technologies Ltd., Atlas House, Simonsway, Manchester, M22 5PP, U.K.

This work describes a new type of mass analyzer which employs trapping in an electrostatic field. The potential distribution of the field can be represented as a combination of quadrupole and logarithmic potentials. In the absence of any magnetic or rf fields, ion stability is achieved only due to ions orbiting around an axial electrode. Orbiting ions also perform harmonic oscillations along the electrode with frequency proportional to $(m/z)^{-1/2}$. These oscillations are detected using image current detection and are transformed into mass spectra using fast FT, similarly to FT ICR. Practical aspects of the trap design are presented. High-mass resolution up to 150 000 for ions produced by laser ablation has been demonstrated, along with high-energy acceptance and wide mass range.

Sci Spec Mass Analyzer : Orbitrap™ Technology

Sci Spec Mass Resolution

- Ability of a mass spectrometer to distinguish between ions of nearly equal m/z ratios.¹⁰⁰ ۰ 90 80 70 т 60 R = ----←→ ∆m (FWHM) Δm 50 40 = 0.786 30 20 10 - measured mass m Δ m - peak width measured at 50% peak intensity (Full Width Half Maximum) 786 788 100 C = 12.000090 CO 27.9949 = H = 1.007880 N_2 28.0061 70 N = 14.0031= 60 C_2H_4 28.0313 = O = 15.9949Δm 50 S = 31.9721 40 = 0.007 30 It is possible to have combinations of atoms which have the same nominal mass but different accurate mass 20 10 Nominal mass measurements cannot distinguish these compounds These elemental combinations have the same nominal mass but different accurate mass 786
- If such compounds can be mass measured with sufficient accuracy it is possible to determine elemental composition

Sci Spec Mass Accuracy

- Mass Accuracy is the precision of which the mass is measured by MS.
- Typical way of reporting mass error in **ppm** (relative measure).
- Increases confidence in identification.

± 10 ppm

± 5 ppm

± 3 ppm

± 1 ppm

Mass error = $\begin{pmatrix} Measured - Theoretical \\ Theoretical \end{pmatrix}$ x 10⁶ = ppm $[M+H]^+ = 315.23148$ Mass ErrorNumber of Hits ± 200 ppm265 ± 100 ppm133 ± 30 ppm39

14

5

4

1

Sci Spec Mass Resolution & Accuracy

Measured Mass	Mass Error (Da)	Possible Formula	Exact Mass	
		0 ₂	31.9898	C = 12.0000
22.0	± 0.2	CH ₃ OH	32.0261	
32.0		± 0.2 N ₂ H ₄ 32.037 ²		O = 15.9949
		S	31.9721	5 = 31.9721
		CH ₃ OH	32.0261	H = 1.0078
32.02	± 0.02	N ₂ H ₄	32.0374	N = 14.0031
32.0257	± 0.002	S CH ₃ OH	32.0261	
		Z		I

• Main advantage: the possibility to determine the elemental composition of individual molecular or fragment ions, a powerful tool for the structural elucidation or confirmation.

• Isobaric compounds separation

Sci Spec Mass Resolution & Accuracy

• Fine Isotopic Pattern

L-Methionine ($C_5H_{11}NO_2S$) [M+H]⁺

Sci Spec Orbitrap Applications Universe

Sci Spec Orbitrap™ Technology on Publications

nature research

Year	Orbitrap	TOF	Publication Growth on nature.com
2010	61	165	20.0
2011	87	189	In the last decade, Orbitrap is
2012	112	219	proven to be the reliable technology Orbitrap, 15.3 \bigcirc 15.0
2013	188	255	for high impact research
2014	219	361	
2015	380	516	TOE E 7
2016	625	734	U 5.0
2017	794	830	
2018	755	813	0.0
2019	934	934	2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Total	4,155	5,016	YEAR

- In 2019, the publications of Orbitrap technology and TOF on nature.com was equally at 934 publications
- However, when compared year 2019 to year 2010, the publication ratio of Orbitrap technology was exclusively at 15.3 whereas the ratio of TOF was just at 5.7

Sci Spec Orbitrap HRAMS in Pesticide Residue Screening

Pesticide Analysis: Why is Orbitrap HRAMS better than Triple Quadrupole (QqQ) MS?

- The major advantage is the possibility of acquiring **full-scan spectra at high resolution**, whereas QqQ techniques only register SRM or MRM data defined by the user before the analysis.
- LC-HRAMS is possible to identify every substance that ionizes in the source, to make the **retrospective analysis** of other substances, and even to **qualitatively screen the compounds** without reference standards.
- Another important advantage of the HRAMS over QqQ instruments is the **reduction of a false positive** identification, especially when dealing with complex matrices.

Sci Spec Sample Preparation

Reference: GREENPEACE RESEARCH LABORATORIES (2019)

Sci Spec Targeted Screening – Pesticide Explorer Workflow

HPLC parameters

Column temperature	30 °C
Flow rate	300 μL/min
Total run time	15 min
Injection volume	1 µL
Column	Accucore aQ, 100 × 2.1 mm, 2.6 μm
Column	Accucore aQ, 100 × 2.1 mm, 2.6 μm A: Water with 5 mM ammonium formate, 0.1% formic acid
Column Mobile phases	Accucore aQ, 100 x 2.1 mm, 2.6 µm A: Water with 5 mM ammonium formate, 0.1% formic acid B: Methanol with 5 mM ammonium formate, 0.1% formic acid

HRAMS parameters

lon source	H-ESI
Polarity	Positive or Negative
Acquisition mode	 Full MS and dd-MS² (discovery) Full MS @ resolution 70,000 dd-MS² @ resolution 17,500
Mass tolerance	5 ppm

Compliant with regulatory methodology (FDA, USDA, SANCO)

Quantitation method: **250 pesticides** Screening method: **550 pesticides**

Table 1. HPLC gradient run program

Time [min]	Flow rate [mL/min]	A%	B%	Curve
0.0	0.300	98	2	5
1.0	0.300	98	2	5
2.0	0.300	50	50	5
9.0	0.300	2	98	5
12.0	0.300	2	98	5
12.1	0.300	98	2	5
15.0	0.300	98	2	5

Sci Spec Targeted Screening – HRAM MS/MS Database

TraceFinder Software: Library search parameters are easily activated by checking the box. The capability to

search multiple localized mzCloud curated spectral libraries gives you the confidence of the exact match.

Search Options								
Search Types	Library	Settings	Database Settings Element Settings ChemSpider Settings					
Database Search	Librar	Library Settings						
	Libra	Library Selection						
		Enabled	Library Name	Library Type				
 Elemental Composition 	1		MAINLIB	NIST				
ChemSpider Search	2		EFS_HRAM_Spectra_Library.db	mzVault				
			mzCloud Offline for mzVault 2.3_Pest-Herb_2020A.db	mzVault				
✓ Highest Point Analysis	4		EFS_Library.db	mzVault				
	5		LibraryManager_Toxicology_combined_v1.db	mzVault				
Exhaustive Search O Simple Search			mzCloud Offline for mzVault 2.3_2020A.db	mzVault				
Number of top matches 3								

Compound Groupings	Unique Entries	Total Spectra
Environmental and Food Safety	1,634	8,906
Clinical Research and Forensic Toxicology	926	4,630

COMPOUND CLASS					
Food Safety and Environmental	Forensic Toxicology				
Emerging Environmental Contaminants	Drugs of Abuse				
Pesticides	Natural and Industrial Toxins				
Veterinary Drugs	Prescription Drugs				
Mycotoxins	Performance Enhancing Drugs				
Perfluorinated Compounds (PFCs)	Other Drug Monitoring Research				

Sci Spec Targeted Screening – Pesticides Chromatogram

Chromatogram of over 500 pesticides in 15 min in the matrix spiked at 10 ppb. The peak highlighted at 4.32 min is hexazinone showing over 11 scans across the Full Scan quantitation ion used for the analysis.

Sci Spec Targeted Screening – Reproducibility

Robust LC-MS reproducibility of pesticides spiked in the matrix, selected pesticides (overlay of injections 1 to 250) with extracted mass tolerance of 3 ppm

Sci Spec Targeted Screening – Compound Library Matching

Overview of targeted compound detection for chlorpyrifos with library scoring of 89% and △ppm of 0.1837

Samples 👻 🕂 🗙	Compounds									→ ‡ ×
ETO 240 Known_Unknown ACquireX60Kv1	P M	1Z ⇒ LS ⇒ FI ⇒ FI.	🛛 垣 Compound Name 👍	Match Result Name 🛛 🕁	Lib Match Name 👍	Library Score (%) 👍	Formula 👍	m/z (Expected) 👍	m/z (Delta (ppm)) 🛛 ⊨	Adduct ^
▷ ■ Blank_02 ▷ ● ID 02			Aa 👻	<u>A</u> a •	<u>A</u> a •	= -	<u>A</u> a 👻	<u>A</u> a 👻	<u>A</u> a •	<u>A</u> a 👻
	36		Carfentrazone-ethyl	Carfentrazone-ethyl@RT 6.61	Carfentrazone-ethyl	92	C15H14Cl2F3N3	412.0437	0.1267	M+H
m/z Identification	37		Carpropamid	Carpropamid@RT 6.91	Carpropamid	84	C15H18Cl3NO	334.0527	0.1927	M+H
nvz achtijication	38		Chlorantraniliprole	Chlorantraniliprole@RT 5.15	Chlorantraniliprole	80	C18H14BrCl2N5	481.9781	0.6713	M+H
	39		Chlordimeform	Chlordimeform@RT 3.26	Chlordimeform	91	C10H13CIN2	197.0840	0.3078	M+H
	40		Chlorfenvinphos, B-	Chlorfenvinphos, B-@RT 6.89	Chlorfenvinphos, B-	86	C12H14Cl3O4P	358.9768	0.4157	M+H
	41		Chlorfluazuron	Chlorfluazuron@RT 8.67	Chlorfluazuron	81	C20H9Cl3F5N3C	539.9702	0.2925	M+H
	42		Chloridazon	Chloridazon@RT 3.5	Chloridazon	93	C10H8CIN3O	222.0429	-2.9225	M+H
	43		Chlorimuron-ethyl	Chlorimuron-ethyl@RT 5.82	Chlorimuron-ethyl	87	C15H15CIN4O65	415.0474	0.1550	M+H
	44		Chlorphoxim	Chlorphoxim@RT 7.09	Chlorphoxim	90	C12H14CIN2O3	333.0224	0.6412	M+H
	45		Chlorpyrifos	Chlorpyrifos@RT 8.23	Chlorpyrifos	89	C9H11Cl3NO3PS	349.9336	0.1837	M+H
	46	•••••	Chlorpvrifos-methyl	Chlorpvrifos-methvl@RT 7 45	Chlorpvrifos-methyl	90	C7H7CI3NO3PS	321 9023	0.3550	M+H Y
	- 1 ×	Co	onfirmation							- I X
Chromatogram		Spectrum								
M+H	0040 040 0050	Spectrum Spectrum	0% (7 of 8) 🛡 Fragments (2	of 4) Cibrary (2 matches)						
F: FTMS + p Full ms [110.0000-1100.0000]	9318 - 349.9353	#1: Chlorpyrifos 89	#8329 E-ETMS + n ESI d B	M+H #1 Full lock ms2 349 9335@bcd43 33	: Chlorpyrifos C9H11 [50.0000-377.5442]	CI3NO3PS Score: 89	Rank: 1 of 2 Id: 38	30993		
RT: 8.23		#2: Chlorpyrifos 82	#0020 1.1 1MO . p E0101	unock maz 9+3.3555@ncu+3.55	[50.0000-577.0442]					
AA: 6333514.84 AH: 3328417.25			T	114.9611		197.9277				
			50 J	96.9505					321 9022	
-08 jsi			xbei	124.9816	173.8005	200.4938		321.9022		
			60 80	100 120 140	160 180 2	200 220 240	260 2	280 300 3	20 340 360	
ative			#380993 F:FTMS + p ESI	d Full ms2 349.93@hcd45.00 [50.	.00-360.00]					
₩ 40-			100-	0						
20-			2	96.9508 114.9613		197.9275				
8.31	8.63		erdi 1	124.9821	179.9614	213.9046	3	275.8604		
7.8 80 82 84	8.6		0 1 · · · · · · · · · · · · · · · · · · ·	100 120 140	160 180 2	200 220 240	260	280 300 3	20 340 360	
RT(min)	5.0			100 120 110	100 2	m/z	200 1		20 010 000	
L										

Sci Spec Targeted Quantitation – Residue Level Detection

Quantitation ions and confirming ion in the sample, along with calibration range from 0.5 to 100 (500) ppb for ametryn at 1 ppb and fenazquin at 0.5 ppb, which shows excellent R². The technique allows for confident quantitation and screening with confirmation well below the MRL concentration.

Highlights

- LC-Q-Orbitrap-MS method fully optimized and validated for a total of 252 pesticides in surface water.
- Target quantification of pesticides and broader qualitative screening in one single injection.
- Limits of quantification **below 5 ng/L** for most of the pesticides.
- Application of the method to the analysis of river water samples from England.

www.scispec.co.th

/scispec

