

Comprehensive Solutions to Pharmaceutical Analysis

PRESENTED BY

Sci Spec Co., Ltd.

Sci Spec System Main Workflows

Sci Spec Orbitrap Applications Universe

Sci Bioanalysis: Bioequivalence (BE)

Figure B-2. LC-Q Orbitrap Parallel Reaction Monitoring of Analytes and Internal Standard. Displayed are chromatograms of (A) ISTD, (B) DXR and (C) DXR_C13. The transitions used were: DXR 544.18 \rightarrow 130.08, 379.07, 397.08; DXR_C13 548.20 \rightarrow 130.08, 383.09, 401.11; and Aclarubicin 812.34 \rightarrow 570.23

Sci Spec Extractables and Leachables

Comparison of Soxhlet and Accelerated Solvent Extraction for Leachable and Extractable Analysis of Packing Material

Hua Yang,¹ Kate Comstock,² and Linda Lopez¹ ¹Thermo Fisher Scientific, Sunnyvale, California, USA ²Thermo Fisher Scientific, Sin Jose California, USA

Sci Spec Drug Impurities Analysis

Sci Spec Nitrosamine Impurities in Pharmaceutical Products

27 ก.ย. 2562

http://pca.fda.moph.go.th/public_media_detail.php?id=2&cat=50&content_id=1722

https://www.khaosod.co.th/around-thailand/news_2926836

Sci Spec What are Nitrosamines ?

Nitrosamines (NAs) in APIs and drug products

- Classified as genotoxic impurities, proven as probable human carcinogen
- Detected elevated levels of NDMA and other impurities in several drug products, announced several recalls
- United States Food and Drug Administration (US FDA) published validated GC/LCMS/MS and GC/LC-HRAM methods, and interim acceptable limits for several NAs
 - US FDA recently released guidance for industry to 1) conduct risk assessments on approved or marketed drugs and pending applications, 2) Implement control strategy to reduce and prevent formation of NAs in all API and drug

Sci Spec Analytical Challenges

Selectivity

- High background, formulation matrices and other impurities from drug substances and solvents
- Chemical Interferences (e.g., DMF and NDMA)
- Structural isomers (e.g., NDIPA and NDPA)

Sensitivity

- Trace level of impurities in presence of high concentration of API
- Total nitrosamine contents should be less than 30 ppb or 26.5 ng/day based on daily maximum dosage intake of 880 mg/day

Regulatory Expectation and Compliance

- Meet US FDA requirements in terms of sensitivity, linearity, and reproducibility
- Data collection and processing in compliant software to ensure data integrity and security

Analytical method needs to demonstrate high selectivity, sensitivity, and meets US FDA regulatory guidelines

Thermo Scientific™ **Exploris™ 120** HRAM-MS System

A rapid, highly selective and sensitive LC-HRAM-MS method was developed for detection and quantitation of 9 nitrosamines in commercial ranitidine drug product

Sci Spec Product Specification

	Orbitrap Exploris 120
Resolution @ <i>m/z</i> 200	up to 120,000 FWHM
Mass Range	40 – 3,000
Scan Rate	up to 22 Hz
Sensitivity	MS/MS: 200 fg reserpine on column S/N 100:1 tSIM: 200 fg reserpine on column S/N 250:1

Sci Spec Orbitrap™ Technology

Data Acquisition Mode

Analyte	Internal standard (ISTD)
N-Nitrosodiethylamine (NDEA)	NDEA-D ₁₀
N-Nitrosodimethylamine (NDMA)	NDMA-D ₆
N-Nitrosodi-n-butylamine (NDBA)	NDBA-D ₁₈
N-Nitroso-di-n-propylamine (NDPA)	NDPA-D ₁₄
N-Nitrosomethylethylamine (NMEA)	NMEA-D ₃
N-Nitrosopiperidine (NPIP)	NPIP-D ₁₀
N-Nitrosopyrrolidine (NPYR)	NPYR-D ₈
N-Ethyl-N-nitroso-2-propanamine (NEIPA)	NEIPA-D ₅
N-Nitroso-di-isopropylamine (NDIPA)	NDIPA-D ₁₄

Ranitidine substance

Parameters	Value			
HPLC column	Acclaim Polar Advantage II, 100 $ imes$ 2.1 mm, 2.2 μ m			
Column temperature	40 °C			
Flow rate	0.5 mL/min			
Mobile phase A	Water + 0.1% formic acid			
Mobile phase B	Methanol + 0.1% formic acid			
Gradient	Time (min)%Mobile phase A%Mobile phase0.09550.59558.05959.05959.195512.0955			
Injection volume	5 µL			

Parameters	Value			
Ionization	APCI			
Polarity	Positive			
Spray current	2 μΑ			
Sheath gas	45			
Auxiliary gas	10			
Sweep gas	0.5			
lon transfer tube temp.	200 °C			
Vaporizer temp.	300 °C			
Scan mode	tSIM tMS ²			
Polarity	Positive Positive			
Resolution	120,000 120,000			
AGC target	1e5 1e5			
Maximum IT	Auto Auto			
Isolation window	m/z 2.0	m/z 2.0		

Sci Spec Acquisition Mode (Target Quantitation)

Sci Spec Optimized MS Condition for Target Nitrosamines

	Scan type	Scan Start – End (min)	Polarity	<i>m/z</i> of Quan. ion	<i>m/z</i> of Qual. Ion	Normalized CE (%)
NDMA	tMS ²	0.25-1.75	Positive	75.0552	43.0290	60
NDMA-D ₆	tMS ²	0.25-1.75	Positive	81.0928	46.0480	60
NMEA	tMS ²	0.75-2.25	Positive	61.0397	89.0708	15
NMEA-D ₃	tMS ²	0.75-2.25	Positive	64.0585	92.0898	30
NPYR	tMS ²	0.75-2.25	Positive	101.0709	55.0540	60
NPYR-D ₈	tMS ²	0.75-2.25	Positive	109.1212	62.0980	30
NDEA	tMS ²	1.95-3.45	Positive	103.0866	75.0550	45
NDEA-D ₁₀	tMS ²	1.95–3.45	Positive	113.1493	81.0930	45
NPIP	tMS ²	2.35-3.85	Positive	115.0866	69.0699	60
NPIP-D ₁₀	tMS ²	2.35-3.85	Positive	125.1494	78.1260	60
NEIPA	tMS ²	2.85-4.35	Positive	75.0553	117.1022	15
NEIPA-D ₅	tMS ²	2.85-4.35	Positive	80.0866	122.1336	15
NDIPA	tSIM	3.75-5.25	Positive	131.1179	-	-
NDIPA-D ₁₄	tSIM	3.75-5.25	Positive	145.2058	-	-
NDPA	tSIM	4.25-5.75	Positive	131.1179	-	-
NDPA-D ₁₄	tSIM	4.25-5.75	Positive	145.2058	-	-
NDBA	tMS ²	5.75-7.25	Positive	159.1492	103.0866	15
NDBA-D ₁₈	tMS ²	5.75-7.25	Positive	177.2622	66.1264	15

Sci Spec Thermo Scientific™ Chromeleon™ CDS

...control all your >>> instrumentation

- Native control for Thermo Fisher Scientific IC, GC, LC and MS instruments
- Comprehensive control for more than 300 instruments from other manufacturers
- Customizable ePanels
 provide a consistent look
 and feel for all instruments

...get the most >>> out of your data

- Deliver accurate and reliable results with built-in reporting tools
- Create any report you need using the spreadsheet-based report designer
- Find, collate and report results across multiple sequences using powerful data mining tools

...connect your laboratory

- Network existing Chromeleon CDS stations to create a compliant laboratory-wide solution with no additional licenses
- Utilize network resources and centralize administration of your Chromeleon CDS stations
- Easily interface with other laboratory software

Sci Spec Thermo Scientific™ Chromeleon™ CDS

Using **Chromeleon 7** Chromatography Data System to Comply with **21 CFR Part 11**

Sci Spec Selective Determination of Nitrosamine Impurities

Mass spectrum of 1 ng/ml NDMA standard solution

Target monoisotopic mass of NDMA = 75.0552

Sci Spec Selective Determination of Nitrosamine Impurities

Blank (Excipient)

Sci Spec Calibration Curves for All Compounds in Excipient

The newly recommended detection limits from the US FDA : < 30 ppb for a total of 7 nitrosamines

	LO	D	LLC	Q	
	ng/mL	РРВ	ng/mL	PPB	Linearity
NDMA	0.2	6.8	0.2	6.8	
NMEA	0.2	6.8	0.2	6.8	
NPYR	0.2	6.8	0.2	6.8	
NDEA	0.1	3.4	0.1	3.4	
NPIP	0.2	6.8	0.2	6.8	LLOQ - 50
NEIPA	0.5	17.0	0.5	17.0	
NDIPA	0.1	3.4	0.1	3.4	
NDPA	0.1	3.4	0.1	3.4	
NDBA	0.1	3.4	0.5	3.4	

LOD defined as within 20% accuracy, and 15% RSD.

LOQ defined as within 15% accuracy, and 15% RSD.

PPB is calculated based on 30 mg/mL of drug substance and product extract.

Figure 2. Calibration curves for all compounds in excipient

Sci Spec Recovery, Accuracy, and Precision

Sample recovery and reproducibility

Spiked 2 and 5 ng/mL standard in blank excipient matrix before and after the extraction process (n=5)

	2 ng/mL		5 ng/r	nL
	% Recovery	% RSD	% Recovery	% RSD
NDMA	95	5.5	99	3.2
NMEA	96	6.3	98	1.2
NPYR	99	7.4	100	3.9
NDEA	97	2.4	98	3.2
NPIP	96	2.6	99	5.5
NEIPA	99	8.4	98	2.2
NDIPA	99	2.8	98	2.2
NDPA	95	4.4	96	8.4
NDBA	99	2.9	101	1.5

The recovery for all nitrosamines during the extraction process was between 95 and 101%, and the reproducibility of the replicate injections was within 10% RSD

Accuracy and precision

0.5 ng/mL (17 ppb) check standard in excipient (n=5)

	%Accuracy	%RSD
NDMA	92	10.9
NMEA	95	4.2
NPYR	92	2.7
NDEA	95	3.4
NPIP	98	5.1
NEIPA	93	7.8
NDIPA	97	2.9
NDPA	96	3.0
NDBA	97	4.1

All target nitrosamines at 17 ppb (0.5 ng/mL) could be detected and quantified with high accuracy

Sci Spec Nitrosamine Impurity Levels in Ranitidine Drug Product

NDMA in ranitidine drug substance and tablet. Data processed with a mass tolerance setting of 3 ppm.

a) Ranitidine drug substance

The measured amount of NDMA in 30 mg/mL ranitidine drug substance exceeded the upper limit of calibration and was estimated to be more than 7 ppm

b) Ranitidine drug tablet

the measured amount of NDMA in 300 mg ranitidine tablet was 82 ppb

Both exceeded the acceptable regulatory limit !

Sci Spec Nitrosamine Impurity Levels in Ranitidine Drug Product

- Mass spectrum of ranitidine drug tablet showing co-elution of NDMA and N,Ndimethylformamide (DMF), which could cause overestimation of NDMA when inadequate mass tolerance setting was used for data processing
- The mass difference between NDMA and DMF ¹⁵N isotope is only 21 ppm
- DMF in pharmaceuticals is allowed to be up to 880 ppm as per the ICH Q3C(R6) guideline.
- <u>A minimum resolution setting of 45,000 and a maximum mass tolerance of 15 ppm</u> <u>are required</u> to prevent overestimation of NDMA when quantifying NDMA using the monoisotopic ion.

Overestimation of NDMA when processing the data with mass tolerance set at 25 ppm; the resultant quantitation is 13% higher as compared with results obtained at 3 ppm

Spectrum of ranitidine drug tablet sample containing NDMA and DMF

with a resolution setting of 120,000

- A rapid, highly selective, and sensitive method was developed using the Acclaim Polar Advantage II column, Vanquish Horizon UHPLC system and Orbitrap Exploris 120 mass spectrometer for detection and quantitation of nine nitrosamines in commercially available ranitidine drug products.
- By combining the robust and reproducible chromatography with the 120,000 mass resolving power, fast scanning speed, and sub-ppm mass accuracy of the Orbitrap Exploris 120 system, the resultant method can provide reliable and confident quantitation of nine nitrosamine impurities to meet the September 2020 US FDA regulatory acceptance limits.

Sci Spec References

thermo scientific

APPLICATION NOTE

73814

HRAM LC-MS method for the determination of nitrosamine impurities in drugs

Authors: Hao Yang, Thermo Fisher Scientific, San Jose, CA, US Jon Bardsley, Thermo Fisher Scientific, Hemel Hempstead, UK Min Du, Thermo Fisher Scientific, Boston, MA, US Olaf Scheibner, Thermo Fisher Scientific, Dreieich, Germany

Keywords: Nitrosamines, NDMA, APCI, high resolution accurate mass, mass spectrometry, Orbitrap Exploris 120, Chromatography Data System, compliance-ready, generic drugs, impurities, genotoxic impurities, ranitidine, excipient, ISIM, tMS²

Application benefits

- Detection and quantification of nine nitrosamines with a single liquid chromatography-high resolution accurate mass (HRAM) mass spectrometry method
- Quantitation of nitrosamine impurities in ranitidine drug substance and product below the daily acceptable intake level, that meets the requirements of FDA regulatory guidelines

 Use of Thermo Scientific[®] Chromeleon[®] Chromatography Data System (CDS) software for both data collection and processing in a 21 CFR 11 compliant environment with full data integrity and security capabilities for cGMP facilities

Goal

To demonstrate fast, highly sensitive quantitation of nine nitrosamines with a Thermo Scientific" Orbitrap Exploris" 120 mass spectrometer, and the use of the LC-MS method to measure nitrosamine impurities in commercially available ranitidine drug substances and products

https://planetorbitrap.com/

ThermoFisher SCIENTIFIC