

Determining Elemental Impurities in Pharmaceutical

PRESENTED BY

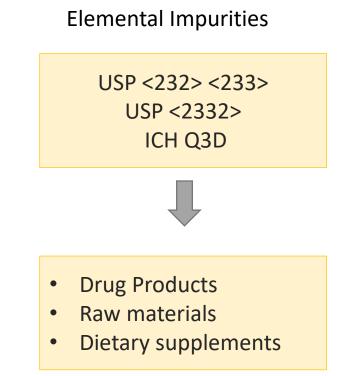
Sci Spec Co., Ltd.

Sci Spec USP <232> <233> and <2232> Basics

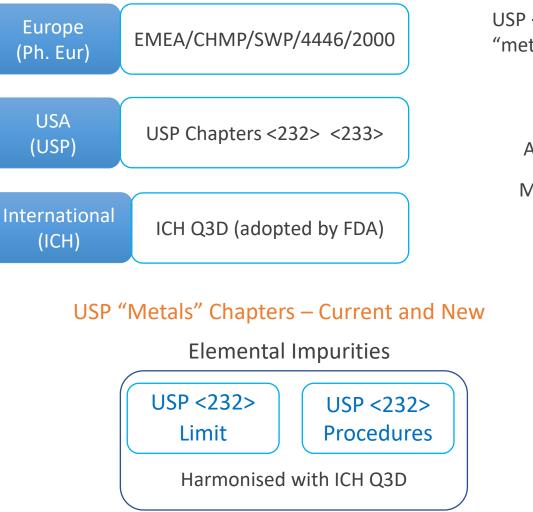
USP <232> - Elemental Impurities "Limits"

Applied to drug products

- Drug substances
- Excipients
- "Big Four" As, Cd, Hg, Pb and remaining 11 elements
- USP <233> Elemental Impurities "Procedures" are specified in
 - Procedure 1 : ICP-OES
 - Procedure 2 : ICP-MS


USP <2232> - Elemental Contaminants in Dietary Supplements, Information and guidance purposes

- Limits for As, Cd, Hg, Pb
- Impurity testing according to Chapter <233>



Applicable to all drug products, does not apply to:

- Herbal products
- Allergenic extracts
- Radiopharmaceuticals
- Vaccines
- Cell metabolites
- DNA products
- Whole blood, Cellular blood components and blood derivatives; plasma/ plasma derivatives
- Dialysate solutions
- Elements deliberately included for therapeutic benefit

Sci Spec Pharmacopeias - Different Guidelines

USP <232> will eventually replace other "metals" General Chapters

Related method applies to dietary supplements only

Elemental Impurities in Dietary Supplements

Terminology changing: "Heavy Metals" "Elemental Impurities" Class 1 : The elements, As, Cd, Hg, Pb are human toxicant

Class 2 : Elements in this class are generally considered as human toxicants are route-depending

- Class 2A : elements have relatively high probability of occurrence in the drug product. \rightarrow Co, Ni, V
- Class 2B : elements have reduced probability of occurrence in the drug product related to their low abundance, low potential and may be intentionally added during manufacture. → Ag, Au, Ir, Os, Pd, Pt, Rh, Ru, Se and Tl

Class 3 : elements in this class have relatively low toxicities \rightarrow Ba, Cr, Cu, Li, Mo, Sb and Sn

Assess is high PDEs, generally > 500 µg/day

Sci Spec Which elemental impurities should be measured?

- The elements that should be included in the product Risk Assessment are different depending on the intended route of administration
- Class 1 and Class 2A elements must be assessed In all products
- Class 3 elements should be considered for Parenteral and/or Inhalational routes of administration
- ALL listed elements should be included if they have been added intentionally

Element	Class ²	Oral PDE	Parenteral PDE,	Inhalation PDE,	
		μg/day	µg/day	µg/day	
Cd	1	5	2	2	
Pb	1	5	5	5	
As	1	15	15	2	
Hg	1	30	3	1	
Co	2A	50	5	3	
V	2A	100	10	1	
Ni	2A	200	20	5	
Tl	2B	8	8	8	
Au	2B	100	100	1	
Pd	2B	100	10	1	
Ir	2B	100	10	1	
Os	2B	100	10	1	
Rh	2B	100	10	1	
Ru	2B	100	10	1	
Se	2B	150	80	130	
Ag	2B	150	10	7	
Pt	2B	100	10	1	
Li	3	550	250	25	
Sb	3	1200	90	20	
Ba	3	1400	700	300	
Mo	3	3000	1500	10	
Cu	3	3000	300	30	
Sn	3	6000	600	60	
Cr	3	11000	1100	3	

Table A.2.1: Permitted Daily Exposures for Elemental Impurities¹

Table A.2.1 Permitted Daily Exposures for elemental impurities ICH Q3D

What is the J value?

J = concentration of the element of interest at the target PDE limit, appropriately diluted to the working range of the instrument.

J = PDE

Max. Daily dose x dilution factor

Dilution may also be needed to bring matrix within limit of the instrument

J value and Sample Dilution

Implication for instrument selection

- Liquid samples of oral medicines (higher PDEs apply) may be able to be run directly on ICP-OES; parenteral and inhalational drugs have lower PDE limits, ICP-MS will be required
- For Solid samples, Dilution factor (prep dilution) may be reduced, allowing ICP-OES to be used. Higher dilution can be applied to bring matrix level within the range tolerated by ICP-MS

Sci Spec Instrument for USP<233> and ICHQ3D

Decision included :

- Sample type/dosage form; Lower limits apply to drug intended for Inhalation and Injection
- Amount of sample available and sample preparation dilution used
- Bigger dilution means lower detection limits of ICP-MS are needed

ICP-OES

- Mainly oral dose medicines PDE limits are higher
- Higher matrix tolerance and large sample volume available : bulk excitants
- No dilution of sample
- Very high throughput needed

ICAP[™] RQ ICP-MS

ICP-MS has much lower detection limit and provides speciation capability

- All dosage form; Oral, inhalation and Injection
- Small sample amounts available; Active pharmaceutical ingredients (APIs)
- Speciation for As/Hg

ICAP[™] PRO XP ICP-OES

Sci Spec Analysis of elemental impurities

Sample preparation

- Dilute bases
 - Aqueous of dilute acid solutions or
 - Organic solvents
- Digestions
 - Using probably concentrated acids: HNO₃, H₂O₂, HCl, H₂SO₄, HClO₄, HF
 - Hot plate
 - Microwave-assisted digestions

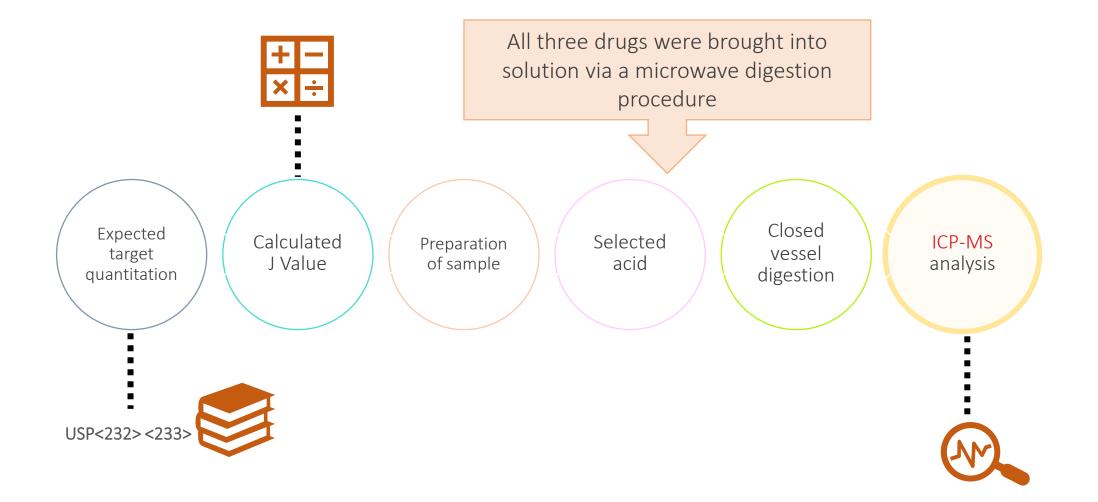
A rapid, highly selective and sensitive ICP-MS method was developed for detection and quantitation of Elemental impurities in drug product

Antidiabetic medicine

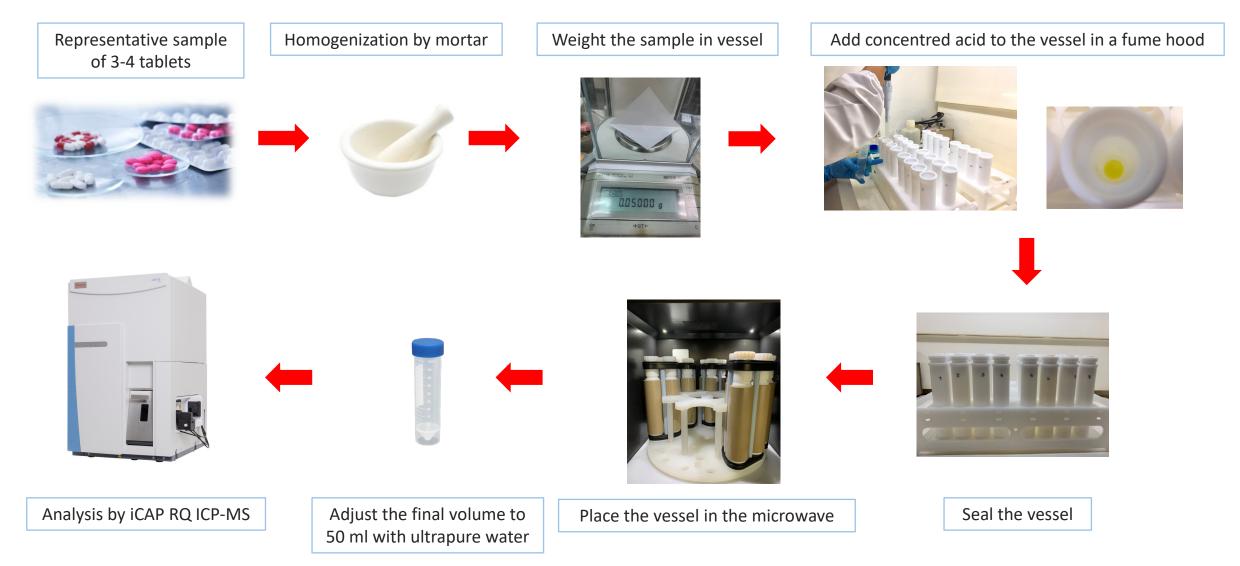
Class	Element	Oral PDE (μg/day)		
	Cd	5		
1A	Pb	5		
TA	As	15		
	Hg	30		
	Со	50		
2A	V	100		
	Ni	200		

Three pharmaceutical products were selected for analysis •

Antihypertensives medicine



Hypolipidemic medicine



Sci Spec System main workflows

Sci Spec Sample Preparation Procedures for ICP

Sci Spec Calibration solution preparation

- Standard solutions at concentrations of blank, 0.5J and 2J
- Ga, In and Tl internal standards at 10 $\mu g/L,$ added online via a T-piece
- Rinse solution : 2% HNO₃

Criteria

- Accuracy test : Matrix spike recoveries for each repeat of all samples at the 0.8J spike
 - Acceptance criteria for test are recoveries of between 80 and 150%
- Precision test : $\leq 20\%$

INORGANIC THE MAN

V-STOCK-66

0 P9/mL:N 0 P9/mL:V P9/mL:Co

USP<232>/ICH Q3D Class 1 Oral

INORGANIC

N-STOCK-65

30 µg/mL:Hg 15 µg/mL:As 5 µg/mL:Cd. P

USP<232>/ICH Q3D Class 2A Oral

d=1.026 g/m

Tl – Internal Standard

Ga - Internal Standard In - Internal Standard

• **KED (Kinetic energy discrimination)** : Technique to reduce polyatomic ion interferences derived from the plasma or vacuum interface in collision cell ICP-MS.

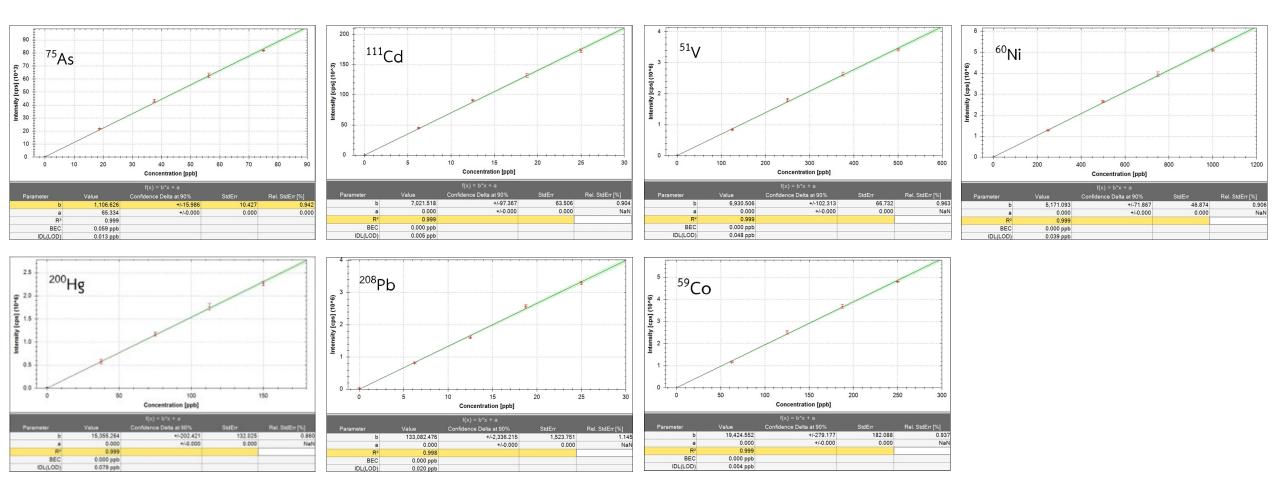
	Element	lsotope	Mode
	Cd	111	KED
Class 1A	Pb	208	KED
CIdSS IA	As	75	KED
	Hg	200	KED
	Со	59	KED
Class 2A	V	51	KED
	Ni	60	KED
	Ga	71	KED
Internal std.	In	115	KED
	ТІ	205	KED

ICAP RQ ICP-MS						
PFA-ST nebulizer						
Sample tube: PVC tube, - ID 0.508mm,orange/yellow						
IS tube: PVC, - ID 0.254 mm, orange/blue						
Drain tube: Silicon tube - ID 1.295 mm gray/gray						
Ni Sample cone						
Ni Skimmer cone						
He gas						

Sci Spec Sequential for analysis

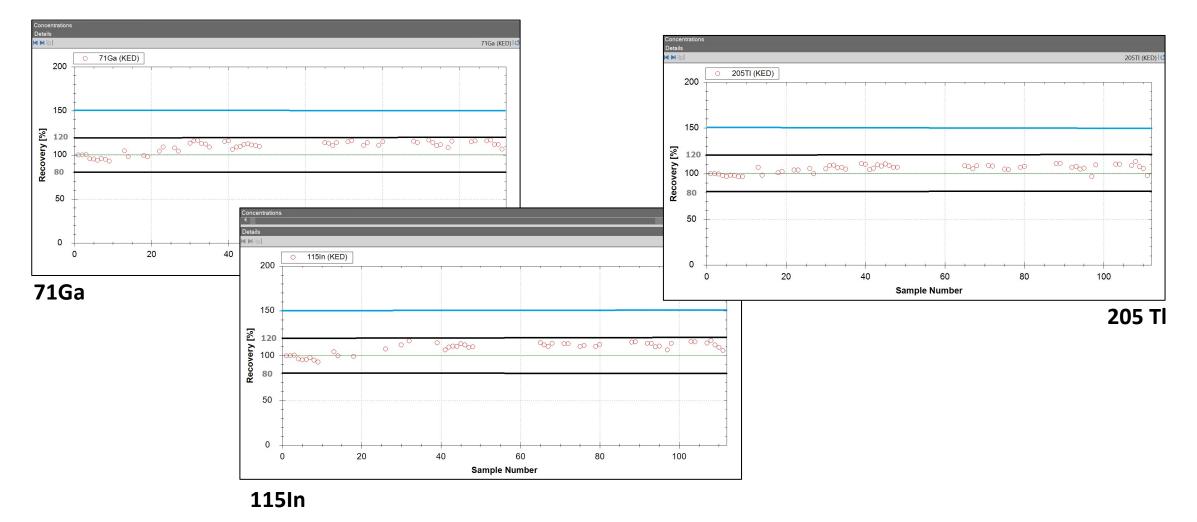
N Label 🗸	51V (KED) [ppb] +	59Co (KED) [ppb] 🏻	60Ni (KED) [ppb] 👳		75As (KED) [ppb] ⊅	111Cd (KED) [ppb] ⊅	20511(+
	0.000	0.000	0.000	100.0%	0.000	0.000	100.0%
STD 0.5J	120.447 (125.000	59.905 (62.500)	245.273 (250.000)	100.3%	19.455 (18.750)	6.404 (6.250)	99.8%
STD 1.0J	259.375 (250.000	129.614 (125.000)	512.641 (500.000)	95.7%	38.852 (37.500)	12.970 (12.500)	98.0%
STD 1.5J	379.204 (375.000	189.404 (187.500)	763.416 (750.000)	95.5%		18.840 (18.750)	97.1%
STD 2.0J	493.297 (500.000	246.914 (250.000)	984.799 (1,000.00	94.0%	· · · · ·	24.659 (25.000)	98.3%
Calibrations					a second		
N Label ⊽	51V (KED) [ppb] ቱ	59Co (KED) [ppb] ⇒	60Ni (KED) [ppb] 🏻		75As (KED) [ppb] ⊅	111Cd (KED) [ppb] ≉	20511(+
ICV 0.5 J	117.606 (94.1%)	58.624 (93.8%)		96.3%		6.195 (99.1%)	98.0%
QCS 0.8J	182.691 (91.3%)	92.307 (92.3%)	394.878 (98.7%)	95.1%	29.462 (98.2%)	9.815 (98.1%)	96.9%
ICB	-0.044	0.002	-0.104	93.1%	0.045	0.001	96.8%
Sample blan	0.000	0.000	0.000	104.8%	0.000	0.000	107.0%
Sample blan	187.467	93.725	381.663	98.1%	26.417	9.149	98.6%
Drug1	-203.044	159.960	18,524.196	99.6%	-36.558	15.317	100.9%
Drug1 + spk	194.198	99.538	411.551	98.0%	27.410	9.959	102.4%
Drug 2	-123.595	162.563	20,293.981	104.4%	-24.368	18.754	104.2%
Drug 2 + spk	199.528	103.411	425.616	109.0%	28.306	9.962	103.9%
Drug 3	-75.530	165.285	19,518.262	108.1%	12.457	23.770	105.9%
Drug 3 + spk	205.221	104.565	426.428	104.2%	28.775	10.508	100.1%
Drug 4	1,263.735	212.197	20,890.860	113.5%	52.365	76.606	105.5%
Drug 4 + spk	222.381	113.042	455.436	115.9%	30.944	10.819	109.1%
Drug 5	1,668.917	386.603	46,128.139	116.6%	-40.900	47.066	109.4%
Drug 5 + spk	216.853	109.840	449.211	113.2%	30.146	10.748	106.8%
Drug 6	1,995.851	408.370	43,955.509	112.3%	-14.458	55.125	107.1%
Drug 6 + spk	223.990	112.252	449.374	109.1%	30.391	10.951	105.1%
CCV	285.686 (114.3%)	139.143 (111.3%)	554.425 (110.9%)	109.4%	42.646 (113.7%)	14.002 (112.0%)	106.0%
QC 0.8 J	209.476 (104.7%)	107.656 (107.7%)	428.520 (107.1%)	105.2%	33.103 (110.3%)	10.847 (108.5%)	103.7%

Analysis ► No. Standard Blank Standard solution (0.5J - 2J) 2-5 ICV-Standard check (0.5J)


- QCS Standard check (0.8J) 7
- **ICB-Standard Blank** 8
- Sample blank 9

1

6


- Sample blank + spike 10
- 11-20 Sample 1, Sample 1 + spiked, ...
 - 21 CCV-Standard check (1.0J)
 - QCS Standard check (0.8J) 22
 - CCB-Standard Blank 23

Linear calibrations with low (sub ng.ml⁻¹) blanks were obtained for all elements.

Sci Spec Results – Internal Standards

• Acceptance criteria for test are recoveries of between 80 and 150%

Sci Spec Results - Raw data from Qtegra

C(S							
Label ▽		75As (KED) [ppb] ⊅	111Cd (KED) [ppb] ⊅		200Hg (KED) [ppb +		208Pb (KED) [ppb] +
	100.0%	0.000	0.000	100.0%	0.000	100.0%	0.000
ICV 0.5 J	96.3%	18.843 (100.5%)	6.195 (99.1%)	97.7%	37.305 (99.5%)	98.0%	5.935 (95.0%)
QCS 0.8J	95.1%	29.462 (98.2%)	9.815 (98.1%)	95.0%	58.540 (97.6%)	96.9%	9.214 (92.1%)
ICB	93.1%	0.045	0.001	93.2%	1.888	96.8%	-0.007
Sample blan	104.8%	0.000	0.000	104.5%	0.000	107.0%	0.000
Sample blan	98.1%	26.417	9.149	99.9%	58.578	98.6%	9.573
Drug1	99.6%	-36.558	15.317	99.3%	4,273.238	100.9%	963.175
Drug1 + spk	98.0%	27.410	9.959	186.1%	72.139	102.4%	9.746
Drug 2	104.4%	-24.368	18.754	104.2%	1,882.429	104.2%	342.885
Drug 2 + spk	109.0%	28.306	9.962	196.4%	70.678	103.9%	9.785
Drug 3	108.1%	12.457	23.770	107.6%	1,281.099	105.9%	3,115.101
Drug 3 + spk	104.2%	28.775	10.508	197.7%	69.115	100.1%	10.081
Drug 4	113.5%	52.365	76.606	112.1%	2,261.651	105.5%	272.913
Drug 4 + spk	115.9%	30.944	10.819	212.1%	77.193	109.1%	9.664
Drug 5	116.6%	-40.900	47.066	116.6%	4,231.559	109.4%	242.519
Drug 5 + spk	113.2%	30.146	10.748	205.5%	77.402	106.8%	10.237
Drug 6	112.3%	-14.458	55.125	111.8%	6,490.754	107.1%	225.278
Drug 6 + spk	109.1%	30.391	10.951	209.3%	84.358	105.1%	10.362
CCV	109.4%	42.646 (113.7%)	14.002 (112.0%)	108.7%	71.082 (94.8%)	106.0%	13.375 (107.0%)
QC 0.8 J	105.2%	33.103 (110.3%)	10.847 (108.5%)	106.0%	55.678 (92.8%)	103.7%	10.073 (100.7%)
ССВ	103.7%	0.135	0.003	103.9%	2.136	99.5%	0.014
Drug 7	106.5%	21.432	15.007	106.4%	1,230.087	104.5%	70.000
Drug 7 + spk	109.1%	29.664	10.248	109.7%	57.503	106.0%	10.240
Drug 8	109.9%	-14.860	41.497	110.8%	3,808.253	109.7%	147.870
Drug 8 + spk	111.9%	29.710	10.418	110.3%	54.915	108.5%	10.870
Drug 9	112.6%	35.771	32.685	113.5%	3,103.980	110.7%	313.152
Drug 9 + spk	111.4%	29.628	10.451	112.1%	55.317	109.1%	10.442
Drug 10	110.6%	161.583	91.696	109.2%	5,013.468	107.1%	337.012
Drug 10 + sp	109.7%	28.450	10.017	110.0%	56.611	106.9%	10.160
	100.00/	01.001	00.110	407 404	100.105	100 10/	

Result of the concentration of the Antihypertensives medicine group

	Concentration (µg/ml)														
Element	Drug A-1	Drug A-2	Drug A-3	Drug A-4	Drug A-5	Drug A-6	Drug A-7	Drug A-8	Drug A-9	Drug A-10	Drug A-11	Drug A-12	Drug A-13	Drug A-14	Drug A-15
Cd	0.0257	0.0198	ND	0.0494	0.0417	ND	ND	ND	ND	ND	ND	0.0516	0.0359	0.0060	ND
Pb	ND	ND	2.4557	ND	ND	ND	0.2965	ND	ND	ND	ND	ND	ND	ND	ND
As	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Со	ND	ND	0.1635	0.2094	ND	ND	0.1572	0.3834	0.4040	ND	0.1598	0.6990	0.3512	0.0456	0.0371
V	1.5584	ND	ND	ND	ND	1.0672	ND	ND	ND	1.5000	ND	ND	1.4884	ND	ND
Ni	ND	1.0775	20.6538	22.0288	ND	1.7826	19.7826	48.4305	46.2400	2.4360	2 1.4305	48.4869	3.4996	1.0417	0.9338

ND = Not Detection < MDL

Sci Spec Concentrate calculation of Drug

Result of the concentration of the Hypolipidemic medicine group

	Concentration (µg/ml)									
Element	Drug Drug B-1 B-2		Drug B-3	Drug B-4						
Cd	ND	0.0912	0.1427	0.0169						
Pb	ND	ND	ND	ND						
As	ND	ND	ND	ND						
Hg	ND	ND	ND	ND						
Со	ND	ND	0.0416	ND						
V	1.0983	ND	ND	ND						
Ni	0.9948	1.4711	0.3628	3.4493						
-										

Result of the concentration of the Antidiabetic medicine group

	Concentration (µg/ml)								
Element	Drug C-1	Drug C-2	Drug C-3	Drug C-4					
Cd	0.0560	0.0160	ND	0.0450					
Pb	ND	ND	ND	ND					
As	ND	ND	ND	ND					
Hg	ND	ND	ND	ND					
Со	ND	0.0719	0.1187	ND					
V	3.0680	1.1062	ND	ND					
Ni	6.2760	2.6478	10.8867	ND					

ND = Not Detection < MDL

Limit of detection (LOD) ; It is the minimum amount of substance analyzed in any samples that can be detected

Background equivalent concentration (BEC) ; It is defined as the analyte concentration that produces a net signal equal to the background

Method detection limit (MDL) ; It is the minimum concentration of the substance to be analyzed, which can be measured by that test method.

	lsotope	LOD (ng/ml)	BEC (ng/ml)	MDL (ng/ml)
	⁵¹ V	0.0477	0.5618	0.8966
	⁵⁹ Co	0.0039	0.0201	0.0264
	⁶⁰ Ni	0.0390	1.7122	0.2606
1	⁷⁵ As	0.0128	0.0590	0.0751
	¹¹¹ Cd	0.0054	0.0190	0.0152
	²⁰⁰ Hg	0.0790	1.0088	1.3824
	²⁰⁸ Pb	0.0213	0.2751	0.2428

Result of the recovery of the Antihypertensives medicine group

	%Recovery of matrix spike														
Element	Drug A-1	Drug A-2	Drug A-3	Drug A-4	Drug A-5	Drug A-6	Drug A-7	Drug A-8	Drug A-9	Drug A-10	Drug A-11	Drug A-12	Drug A-13	Drug A-14	Drug A-15
Cd	100.59	106.19	104.96	107.80	98.81	103.68	99.51	107.36	109.37	105.72	99.52	107.60	99.94	104.01	99.05
Pb	102.87	103.61	84.99	95.26	93.19	102.48	92.62	101.76	103.06	104.35	96.11	100.84	100.76	108.10	97.91
As	98.13	103.96	95.80	102.95	94.06	101.95	91.33	100.42	101.21	101.77	94.29	98.39	94.60	98.95	94.46
Hg	93.69	86.74	114.11	126.75	88.06	86.04	116.65	127.24	137.89	90.41	116.21	127.10	92.27	88.95	92.53
Со	105.89	113.43	104.48	112.94	102.67	109.30	99.46	109.74	112.15	111.94	103.33	108.68	106.34	112.33	102.68
V	103.93	109.69	102.48	110.70	101.54	103.06	97.01	108.06	111.58	107.53	99.65	108.19	103.33	108.12	102.00
Ni	107.04	109.50	103.89	110.96	103.71	109.46	100.33	109.17	109.35	108.26	103.60	106.26	106.61	109.91	106.23

Sci Spec %Recovery of matrix spike

Result of the **recovery** of the Hypolipidemic medicine group

	%Recovery of matrix spike									
Element	Drug B-1	Drug B-2	Drug B-3	Drug B-4						
Cd	104.04	103.38	99.26	99.56						
Pb	104.67	99.59	93.40	98.56						
As	99.83	103.39	99.31	98.48						
Hg	92.49	92.49	92.49	92.49						
Со	108.43	111.92	104.63	104.15						
V	105.65	110.47	105.43	101.98						
Ni	103.89	109.25	108.42	109.34						
			9	1						

Result of the recovery of the Antidiabetic medicine group

		%Recovery of matrix spike			
	Element	Drug C-1	Drug C-2	Drug C-3	Drug C-4
	Cd	100.46	104.79	102.33	104.15
	Pb	99.93	104.64	101.68	106.48
	As	97.29	102.25	98.70	102.36
	Hg	87.19	93.56	93.74	89.51
1	Со	104.86	110.67	109.95	109.83
1	V	103.45	105.30	105.91	107.68
i.	Ni	86.89	95.56	94.32	91.33

Drug Product Testing:

- ✓ Test the drug product and compare against PDE values in "USP <232> and USP <233>"
- ✓ Add all contribution from excipients and compare against PDE values
- ✓ Testing each component material and compare against the referenced PPM levels
- ✓ Acceptance criteria for test are recoveries of between 80 and 150%
- ✓ %RSD < 20%

A toxic acid found in the leaves of the rhubarb plant has the following percent by a composition: hydrogen = 2:24%, carbon = 26.66%, oxygen = 71.1%. What is the empirical formula of the toxic acid?

a) HCo HC₁₂O, o) HC₂O d) HC₂O d) HCO₂

Pu

Which of the following is an alkaline earth metal?

Thank You

Q & A

YOUR SCIENTIFIC SPECIALIST