Thermo Fisher S C I E N T I F I C

The Revolution of Automated Sample Preparation in Food

Chong Cheiw Mei

Application Specialist 20 Sep 2022

The world leader in serving science

Principle of QuEChERS

Quick Easy Cheap Efficient Rugged and Safe

What is QuEChERS?

Sample Preparation for pesticides and more

- The acronym stands for <u>Qu</u>ick, <u>Easy</u>, <u>Ch</u>eap,
 <u>Efficient</u>, <u>Rugged and Safe</u>
- First published in 2003 by M. Anastassiades,
 S.J. Lehotay and team
- Originally used for pesticides analysis
- More than 1800 non-pesticides such as:
 - Mycotoxins
 - Antibiotics
 - Vet Drugs

412 ANASTASSIADES ET AL.: JOURNAL OF AOAC INTERNATIONAL VG	DL. 86, NO. 2, 2003
RESIDUES AND TRACE ELEMENTS	
Fast and Easy Multiresidue Meth Extraction/Partitioning and "Dis for the Determination of Pesticid	nod Employing Acetonitrile persive Solid-Phase Extraction" e Residues in Produce
MICHELANCELO ANASTASSIADES ¹ and STEVEN J. LEHOTAY ² U.S. Department of Agriculture, Agricultural Research Servic Wyndmoor, PA 19038 DARINKA ŠTAJNBAHER Public Health Institute, Environmental Protection Institute, Pr FRANK J. SCHERCK U.S. Food and Drug Administration, Office of Regulatory Aff GA 30309	re, Eastern Regional Research Center, 600 E. Mermaid Ln, vomajska 1, 2000 Maribor, Slovenia fairs, Southeastern Regional Laboratory, 60 Eighth St, Atlanta,
A simple, fast, and inexpensive method for the de- termination of pesticide residues in fruits and veg- etables is introduced. The procedure involves ini- tial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid–liquid parti- tioning formed by addition of 4 g anhydrous MgSOa plus 1g NaCl. Removal of residual water and cleanup are performed simultaneously by us- ing a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhy- drous MgSOa, and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix compo- nents, such as organic acids, certain polar pig- ments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confir- matory analysis of GC-amenable pesticides. Re- coveries between 85 and 101% (mostly 395%) and repetabilities typically -5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in <30 min with approximately \$1 (U.S.) of materials per sample.	Provide the set of the
Received September 4. 2002. Accepted by 15 October 25, 2002. - Current address: Claminolous two Verenizantementantumgnant Sutgart, Schafhandstrasse 3/2, 07736 Feilbach, Germany. - Author to two more correspondence should be addressed; e-mail: skelotory@arserr.gov. Mention of France of fram name does not consisting an endorsement by the U.S. Department of Agriculture above others of a similar nature not mentioned.	partmoning, cicanup, and determinative steps $(L=4)$. In the 1970s, new methods were developed to extend the analytical polarity range to cover OCs, OPs, and organomitogen pesticides (ONs) in a single procedure (5. 6). These multiclass MRMs differed from the Mills approach in that acetone, rather than MeCN, was used for the initial ex- traction. However, the new methods still used nonpolar sol-

Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431.

QuEChERS Methods

Step 1: Crude Extract Preparation

- Principle
 - Using Liquid/Liquid portioning with Acetonitrile (ACN)
 - Water and Acetonitrile is miscible
 - Introduce high salt, change the affinity of water to lead to two phases separated
 - · Require shaking and centrifugation for phase separation
- Methods and Regulations
 - Lehotay et. al. (AOAC Official Method 2007.01) modified the method using acetate buffer salt
 - Anastassiades et. al. (CEN Standard Method EN 15662) modified the method using citrate buffer salt

[3] S.J. Lehotay, K. Maštovská, A.R. Lightfield, J. AOAC Int. 88 (2005), 615–629 & 60A.

[4] M. Anastassiades, E. Scherbaum, B. Tas, delen, D. Stajnbaher, in: H. Ohkawa, H. Miyagawa, P.W. Lee (Eds.), Crop Protection, Public Health, Environmental Safety, Wiley-VCH, Weinheim, Germany, 2007, p. 439.

QuEChERS Methods

Step 2: Clean-up of the extract – The most suitable sorbent mix?

- dSPE is a manual step (= dispersive SPE)
 - Mixing the extract with various sorbent materials
 - Matrix specific mixes used
- Challenges and Limitations
 - Low recovery for fatty samples
 - Matrix effects with complicated matrices
 - e.g. spices, tea, and oils
 - or a high chlorophyl contents
- "Modified QuEChERS" search in Google Scholar:
 - 5700 publications since 2003 deal with modified clean-up of the QuEChERS extract⁶
 - Customized dSPE clean-ups are used matrix dependent
 - with mixes of many different sorbent materials:
 - Like PSA, C18, GCB, CarbonX®, MgSO4, Clorofiltr®, Z-Sep®, Z-Sep+®, ZrO₂, EMR®, ...
 - or freezing the extract

From: Lehotay, S.J. 2013. Revisiting the Advantages of the QuEChERS Approach to Sample Preparation. Separation Science Webinar. Google Scholar search result: "modified QuEChERS", 2003 to today.

QuEChERS Methods in Pesticide Analysis

AOAC vs. EN

From: Lehotay, S.J. 2013. Revisiting the Advantages of the QuEChERS Approach to Sample Preparation. Separation Science Webinar.

QuEChERS-er

A better QuEChERS

8 Proprietary & Confidential | authoremail@thermofisher.com | 21-October-2020

Automated E Ch E S R Qu Quick Easy Cheap Effective Rugged Safe Crude Extract Preparation Automate clean-up Automate Centrifuge Extract Salt out Centrifuge Dispersive Shake Injection SPE sample sample sample sample sample Add MgSO₄ MgSO₄ + Variations Phase separation To LC or GC Add Acetonitrile Phase separation + Na-based salt PSA / C18 / GCB

thermoscientific

µSPE: SPE designed for PAL Automation

Controlled elution from low particle size sorbent bed

Why use µSPE?

Compare to the classical cartridge SPE

Classical SPE

- Limited selectivity
 - High sample and solvent volumes
 - Requires evaporation with N₂
 - End volume >>100 μ L in vial
- Vacuum operated
- Drying before elution
- Manual operation
 - Time consuming
 - Low sample throughput
 - Batch processing
- No QA/QC

14

• As of manual operation

μSPE

- High selectivity
 - compares to LC separation
 - Sharp elution peak profile, **no** concentration
 - Final volume < 100 µL (or online)
- Positive pressure w liquid syringe
- No drying step
- Walk away automation
 - Fast with < 10 min
 - High productivity
 - Prep on chromatographic timescale
- Traceable
 - Processing well documented
 - 21CFR11 compatible

US Department of Agriculture

Steven Lehotay application for critical food stuff fish, meat, spices

- Shorter clean-up time
- Automated, compared to original QuEChERS
- Wide range of lipid content, e.g. salmon
- Critical range of matrices, e.g. dried spices
- Solid reference as clean-up for Quechers extracts
- Longer uptime for increased sample througput
- Less maintenance higher productivity
- Call the automated as QuEChERS-er (2020, EPRW)

"Injector liner after 230 matrix injections, only little dirt found"

Lehotay, S et al. Chromatographia (2016). doi:10.1007/s10337-016-3116-y

ORIGINAL	
Automated Mini-Column Solid-Phas for High-Throughput Analysis of Ch in Foods by Low-Pressure Gas Chro Mass Spectrometry	se Extraction Cleanup temical Contaminants matography—Tandem
зеетен ј. Глиокау Глјин пан 🦿 текна зародншкота	
Received: 8 April 2016 / Accepted: 24 May 2016 © The Author(s) 2016. This article is published with open access at Sprin	ngerlink.com
Abstract This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography—tandem mass spectrometry (LPGC- MSMS) analysis of pesticides and environmental contami- nants in QuECHERS extracts of foods. Cleanup efficiencies and breakthrough volumes using different mini-SPE sort- ents were compared using avocado, salmon, pork loin, and kale as representative matrices. Optimum extract load vol- ume was 300 µL for the 45 mg mini-cartridges containing 2012/121 (wiw/wiw) anh. MgSO/PSA (rimary second- ary amine)/Cl ₁₀ /CarbonX sorbents used in the final method. In method validation to demonstrate high-froughput capa- bilities and performance results, 230 spiked extracts of 10 different foods (apple, kiwi, carrot, kale, orange, black olive, wheat grain, dried basil, pork, and salmon) under- went automated mini-SPE cleanup and analysis over the Mention of brand or firm name does not constitute an endorsment by the US Department of Agriculture above others of a similar parks not methode. USDA is an equal oppertunity	course of 5 days. In all, 325 analyses for 54 pesticides and 43 environmental contaminants (3 analyzed together) were conducted using the 10 min LPGC-MS/MS method without changing the liner or returning the instrument. Merely, 1 m equivalent sample injected achieved <5 ng \pm^{-1} limits of quantification. With the use of internal standards, method validation results showed that 91 of the 94 analytes including pairs achieved satisfactory results (70–120 % recovery and RSD \leq 25 %) in the 10 tested food matrices (<i>n</i> = 160). Matrix effects were typically less than \pm 20 %, mainly due to the use of analyte protectants, and minimal human review of software data processing was needed due to summation function integration of analyte peaks. This study demonstrated that the automated mini-SPE + LPGC-MS/MS method yielded accurate results in rugged, high-throughput operations with minimal labora and data review. Keywords High-throughput automation - Solid-phase extraction cleanup · Pesticide residue analysis · QuEChERS sample preparation · Fast GC-MS/MS · Analyte protectants - Environmental contaminants - Foods
Published in the topical collection 5th Latin American Pesticide Residue Workshop with guest editor Steven J. Lehotay.	Introduction
Electronic supplementary material The online version of this article (doi:10.1007/s10337-016-3116-y) contains supplementary material, which is available to authorized users.	Trade of food products continues to increase globally [1], which is leading to greater food safety concerns [2, 3], and recent legislation [4] places greater emphasis on a hipher rate
 Steven J. Lehotay steven.lehotay@arn.usda.gov US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermoid Jane Wordhover Dr. 10178 1158.01 	of monitoring by private as well as regulatory laboratories to test for pesticide residues and other contaminants in the commodities. However, the cost of monitoring adds to the price of the food to the consumer, and delays in the analy- sis of presidues litters and the set such as the set of the
² College of Science, China Agricultural University, Beijine 100193 China	product. Yet, more pesticides are being registered monthly for different crops worldwide [5], while human health and

Clean-up Workflow

Fully automated by the TriPlus RSH

Procedure step	LCMS	GCMS
Clean syringe with elution solvent		
Condition µSPE cartridges in the conditioning rack	150 µL	200 µL
Transfer cartridge to the elution rack		
Load QuEChERS extract from the sample vial onto the cartridge	150 µL	300 µL
Clean syringe with elution solvent		
Elute the cartridge with elution solvent	150 µL	150 µL
Collected eluents in 2 mL vial, total volume:	300 µL	250 µL
Discard cartridge to waste baker		
LCMS: Dilute combined extract and mix with syringe	1200 µL	
GCMS: Add analyte protectant solution		30 µL
Dilute combined extract with EtOAc and mix with syringe		250 µL
Inject to GCMS or LCMS	10 µL	3 µL

Clean up performance in Grape

Fully Automated µSPE in Rice

By TriPlus RSH with GC-MS/MS and LC-MS/MS

Rice by $\mu SPE\text{-}GC\text{-}MS/MS$ and $\mu SPE\text{-}LC\text{-}MS/MS$

- Total 209 target Pesticides by GC-MS/MS
- Total 195 target Pesticides by LC-MS/MS

Thermo Fisher

Background interference

Matrix effects and system stability

a) Rice sample matrix effects ■ uSPE ◆ d-SPE 100% Matrix Effects (%) 60% 20% -20% -60% -100% 2 10 12 0 8 6 Retention time (min)

21

Thermo Fisher

Ion ratio % for ethalfluralin in rice from matrix-matched standards and recovery samples (n=6) prespiked at $10\mu g/kg$ and subjected to μSPE clean-up

Precision and Accuracy

Fully Automated Vet Drug Clean-up Thermo Fisher

By TriPlus RSH µSPE

VetDrugs Residues Analysis

VetDrugs Residues Analysis | Thermo Fisher Scientific - TH

Automated Clean-up Workflow

With online analysis

Table 1. Steps for automated online μSPE cleanup method with LC injection using the CEC18 cartridge

Step	Action
1	Aspirate 300 μ L of QuECheRS extract into the syringe
2	Move µSPE cartridge to elution tray
3	Load 300 μ L QuECheRS extract onto μ SPE cartridge
4	Perform µSPE -push extract through cartridge
5	Move-dispose of cartridge to waste bucket
6	Change to LC/MS injection tool
7	Perform sandwich injection
8	Change to prep syringe for next sample
9	Proceed with prep-ahead for next extract sample upon ready Signal

В А Elution tray ige tray Waste Eluate tray

Sample 1	µSPE clean-up	Analysis	1		
Sample 2		µSPE clean-up	Analysis	1	
Sample 3			µSPE clean-up	Analysis	,

Comparing the Cleanup effects

Bovine muscle

Chromatogram of preSpiked Vet Drug

In Bovine Kidney

Figure 4. Overlaid chromatograms of all 103 veterinary drugs included in the method, 50 ng/g in bovine kidney extract.

Automated µSPE Cleanup performance

Tissue Type/Cleanup Technique

■ ME < 20% ■ 20< ME<50 ■ ME>50

Bovine Kidney 5 ng/g CEC18-µSPE

Bovine Kidney 50 ng/g CEC18-µSPE

Long Term Performance

Levamisole in Bovine Muscle–RSD 4.39%

Thermo Fisher

SCIENT

Fully Automated QuEChERS

Is this possible?

The world leader in serving science

31 Proprietary & Confidential | authoremail@thermofisher.com | 21-October-2020

Sampling Workflow Editor

Home ► Shop All Products ► Chromatography Systems ► Chromatography Software ► TriPlus™ RSH Sampling Workflow ...

TriPlus[™] RSH Sampling Workflow Editor Software

Catalog number: 1R77010-1200

Related applications: Chromatography

Technical Support | Customer Service

Easily create and test sample preparation methods with the Thermo Scientific[™] TriPlus[™] RSH Sampling Workflow Editor Software. When connected with the Thermo Scientific[™] TriPlus[™] RSH and TriPlus RSH SMART, this software enables easy programming of the autosampler to fully automate common sample handling operations as well as more complex sample preparation procedures. The visual programming approach of the software makes this operation very easy and intuitive via its drag and drop functionality, not requiring any programming skills.

Fully QuEChERS Automation

Analyzing Organophosphates in Orange Juice

References

Application Notes

thermo scientific

APPLICATION NOTE

Automated micro-SPE clean-up for GC-MS/MS analysis of pesticide residues in cereals

Authors: Sarvendra Pratap Singh, Subodh Kumar Budakoti, and Dasharath Oulkar Customer Solution Center, Thermo Fisher Scientific, Ghaziabad, India

Keywords: Pesticide residues, cereals, QuEChERS, micro-solid phase extraction (µSPE), GC-MS/MS, advanced electron ionization (AEI), targeted quantitation, TSQ 9000, Chromeleon Chromatography Data System

Goal

To assess the suitability of an automated micro-solid phase extraction (uSPE) clean-up of QuEChERS extracts for the determination of pesticide residues in cereal samples by gas chromatography coupled to triple quadrupole mass spectrometry

Introduction

Worldwide food demand is set to increase substantially in the next few decades1, and consequently, food safety concerns are also growing quickly^{2,3}. To meet the demand for food, pesticides are used to control pests and ensure high crop yields, but there are some concerns that banned pesticides are still used illegally. If used incorrectly, pesticides can affect consumer's health, hence the importance regulatory bodies place on screening food samples for the presence of pesticide residues.

65906

Given the large number and types of food samples that need to be tested, any delays in the analysis could ultimately impact the timely import/export of food products. which is crucial for perishable products. The extraction of pesticides from food matrices is typically carried out using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) acetonitrile method. Many versions of QuEChERS have been published but one of the most widely used versions is AOAC 2007.014. This method includes a manual dispersive solid-phase extraction clean-up step (dSPE) of the initial non-cleaned extract. This clean-up procedure can be time-consuming and can result in limited removal of matrix co-extractives. By replacing this manual cleanup step with an automated µSPE clean-up approach, laboratories can save time, achieve more effective removal of co-extractives, and thus improve the consistency of the results. A miniaturized SPE method, consisting of sorbents

Thermo Fisher

thermo scientific

APPLICATION NOTE 65684

Multi-pesticide residues analyses of QuEChERS extracts using an automated online µSPE clean-up coupled to LC-MS/MS

Authors: Long Sun¹, Qilei Guo¹, Cristina C. Jacob², Claudia P.B. Martins², Richard Fussell3; 1Thermo Fisher Scientific, Customer Solution Center, Beijing, China; ²Thermo Fisher Scientific, San Jose, CA, USA; 3Thermo Fisher Scientific, Hemel Hempstead, UK

Keywords: Pesticide residues analysis, LC-MS/MS, QuEChERS, online µSPE, clean-up, automation

Goal

To demonstrate the feasibility of an automated online sample clean-up solution coupled to LC-MS/MS for rapid and robust quantitation of multi-pesticide residues in food matrices.

Introduction

Pesticides are widely used to control pests worldwide, so crops, feed, and food products are routinely tested for the presence of pesticide residues and to check for compliance with permitted Maximum Residue Levels (MRLs).1.2 Given the globalization of the food supply, the large number of different pesticides used, and the many samples to be analyzed, robust, accurate, reproducible,

and cost-effective multiresidue methods allowing the reliable analysis of hundreds of pesticides in a single experiment and in many different sample types are required

The QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach is commonly used for the analysis of multipesticide residues, because of the substantial productivity gains that can be achieved.35 The QuECHERS approach usually involves extraction with acetonitrile in the presence of a mixture of salts followed by centrifugation. An aliquot of the supernatant is cleaned up by manual dispersivesolid phase extraction (d-SPE) in an attempt to remove unwanted matrix compounds, such as pigments, sugars, organic acids, excess water, and other components,

thermo scientific

APPLICATION NOTE

Multi-class veterinary drugs analyses of QuEChERS extracts using an automated online µSPE cleanup coupled to LC-MS/MS

Authors: Dwayne Schrunk, Laura E. Burns, Veterinary Diagnostic Laboratory, Iowa State University; Ed George, Charles Yang, Cristina Jacob, Thermo Fisher Scientific, San Jose, CA, USA; Jonathan Beck, Tom Flug, CTC Analytics

Keywords: Veterinary drug residue analysis QuEChERS, Online µSPE, LC-MS/MS, TSQ Altis, Automation, Solvent Sandwich Injection Technique, Auto Calibration Standard Preparation

Goal

To demonstrate an automated online sample cleanup solution coupled to LC-MS/MS for rapid and robust screening and quantitation of veterinary drug residues in animal tissues.

Introduction

Veterinary drugs are administered to animals to ensure animal welfare. It is necessary to screen food products for veterinary drug residues at the maximum residue limits (MRL) set by global regulatory agencies. This screening typically involves both identification and quantification of veterinary drugs using LC-MS/MS.

A sample preparation approach often applied to veterinary drug screening in animal tissues is QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction.1 This process involves a liquid-solid extraction of the sample with acetonitrile and salts. After the extraction, sample

cleanup is often preferred. One common cleanup approach is dispersive solid phase extraction (dSPE), which involves adding a fixed amount of a powdered reagent (such as C18 or PSA) to the extract, vortexing for several minutes, then centrifugation and transfer into an autosampler vial. A second approach is solid phase extraction (SPE), in which the extract is passed through a sorbent material contained in a cartridge using a vacuum manifold. The goal of both cleanup approaches is to avoid the loss of target analytes whilst removing as many matrix co-extractives as possible. since they can cause ionization suppression and faster contamination of the LC-MS/MS detection system.

> **ThermoFisher** SCIENTIFIC

66000

Thank you

Q&A

35 Proprietary & Confidential | authoremail@thermofisher.com | 21-October-2020