

การใช้ Isotope Ratio ในการตรวจสอบย้อนกลับ การตรวจสอบการปลอมปนของสินค้าเกษตร

Isotope Fingerprints

Chemically similar but physically different

Materials have a fingerprint, a unique chemical signature that allows the sample to be identified.

To visualize this fingerprint, Isotope Ratio Mass Spectrometry (IRMS) is used to measure stable isotopes and identify the isotope fingerprint of a material or product.

IRMS traces carbon, nitrogen, sulfur, oxygen, and hydrogen isotopes by detecting their natural variations, which can reveal to the origin and history of samples.

scispec

Topics

Things that we will cover on today

- What an Isotope Fingerprint is
- How Isotope Fingerprints from
- How Isotope Fingerprints are measured
- Where Isotope Fingerprints are useful
 - O Origin
 - O Authenticity
 - O Adulteration
 - O Mislabeling

VISIT US

Isotope Fingerprints

History can't hide from the Isotope Hunter. Geography, geology and growth conditions of foods, fibers, liquids or stone are embedded in their unique isotope fingerprints. Trace your sample history with the Thermo Scientific[™] Isotope Ratio Mass Spectrometry portfolio.

³Carbon

Interprets: Botanical origin C3, C4 and CAM photosynthesis Identifies: Adulteration (e.g. sweetening with cheap sugar) Foods Affected: Honey, liquor, wine, olive oil, butter and flavors

Photosynthesis

Oxygen

Interprets: Local-regional rainfall geographical area Identifies: Dilution of beverages, and place of product origin Foods Affected: Coffee, wine, liquor, water, sugar, animal meat and flavors

Water

Nitrogen

Interprets: Soil processes, plant fertilizer processes Identifies: Mislabeling (organic vs. non-organic) Foods Affected: Fruits, vegetables and animal meat

Soil / Fertilizer

Element	Minor Isotope	Natural Abundance [%		
Hydrogen	² H (D)	0.01 <mark>557</mark>		
Carbon	¹³ C	1.11 <mark>140</mark>		
Nitrogen	¹⁵ N	0.36 <mark>630</mark>		
Oxygen	¹⁸ O	0.20 <mark>004</mark>		
Sulfur	³⁴ S	4.21 <mark>500</mark>		
	Hydrogen Carbon Nitrogen Oxygen	Hydrogen ² H (D) Carbon ¹³ C Nitrogen ¹⁵ N Oxygen ¹⁸ O		

That's where the information is.

Sulfur

Interprets: Local soil conditions, proximity to shoreline Identifies: Product origin Foods Affected: Fruits, vegetables, animal meat and honey

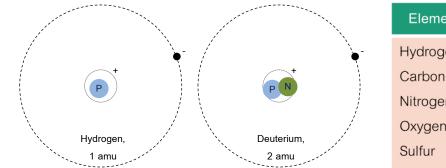
Hydrogen

Interprets: Local-regional rainfall geographical area Identifies: Dilution of beverages, product origin Foods Affected: Coffee, wine, liquor, water, sugar, animal meat and flavors

Water

Major Isotope	
¹ H	9
¹² C	
¹⁴ N	
¹⁶ O	
³² S	

Sci Spec


scispec 🔇 02-454-8533

Measuring the Isotope fingerprints

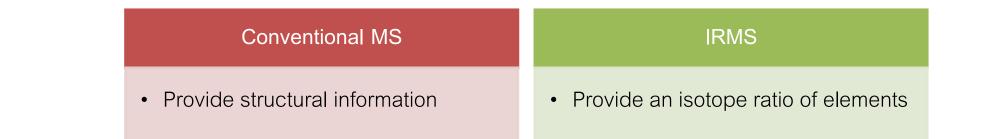
Isotope Ratio Mass Spectrometry (IRMS)

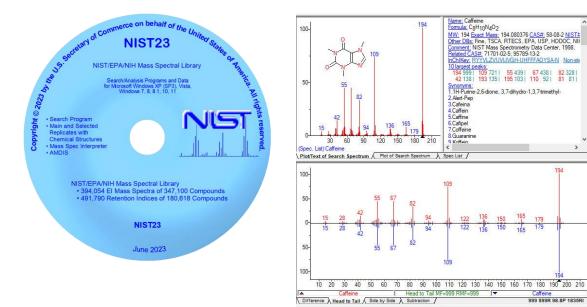
- Isotope ratio mass spectrometry (IRMS) is a specialization of mass spectrometry, in which mass spectrometric methods are used to measure the relative abundance of isotopes in each sample.^[1]
- > The isotope ratio mass spectrometer (IRMS) allows the precise measurement of mixtures of stable isotopes.^[2] The analysis of 'stable isotopes' is normally concerned with measuring isotopic variations arising from mass-dependent isotopic fractionation in natural systems.

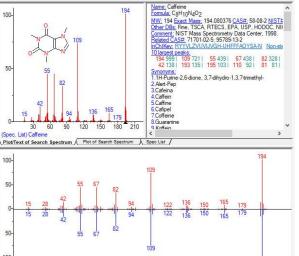
Element	Minor Isotope	inor Isotope Natural Abundance [%]	
Hydrogen	² H (D)	0.015 57	
Carbon	¹³ C	1.11140	
Nitrogen	¹⁵ N	0.366 30	
Oxygen	¹⁸ O	0.200 04	
Sulfur	³⁴ S	4.215 00	

Isotropic Fractionation: any process that changes the relative abundances of stable isotopes of an element.

scispec

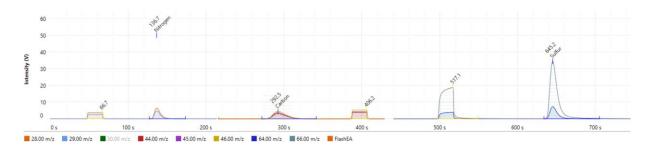

02-454-8533


^[1] Paul D, Skrzypek G, Fórizs I (2007). "Normalization of measured stable isotopic compositions to isotope reference scales - a review". Rapid Commun. Mass Spectrom. 21 (18): 3006–14.


^[2] Townsend, A. (ed) (1995). Encyclopaedia of Analytical Science Encyclopaedia of Analytical Science. London: Academic Press Limited

Isotope ratio mass spectrometer (IRMS)

designed to measure the relative abundances of isotopes with very high precision



Head to Tail ME=999 BME=999

Caffeine

999 999R 98.8P 1835RI

Caffeine

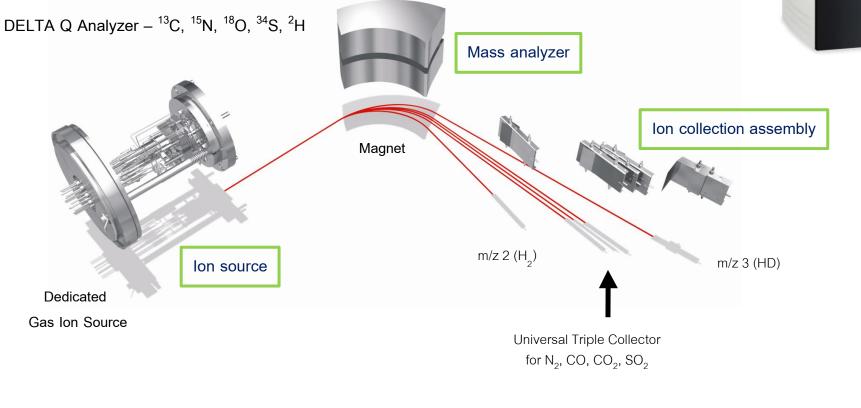
VISIT US

USGS-26

monium Su

I Unit

International Atomic Energy Agency

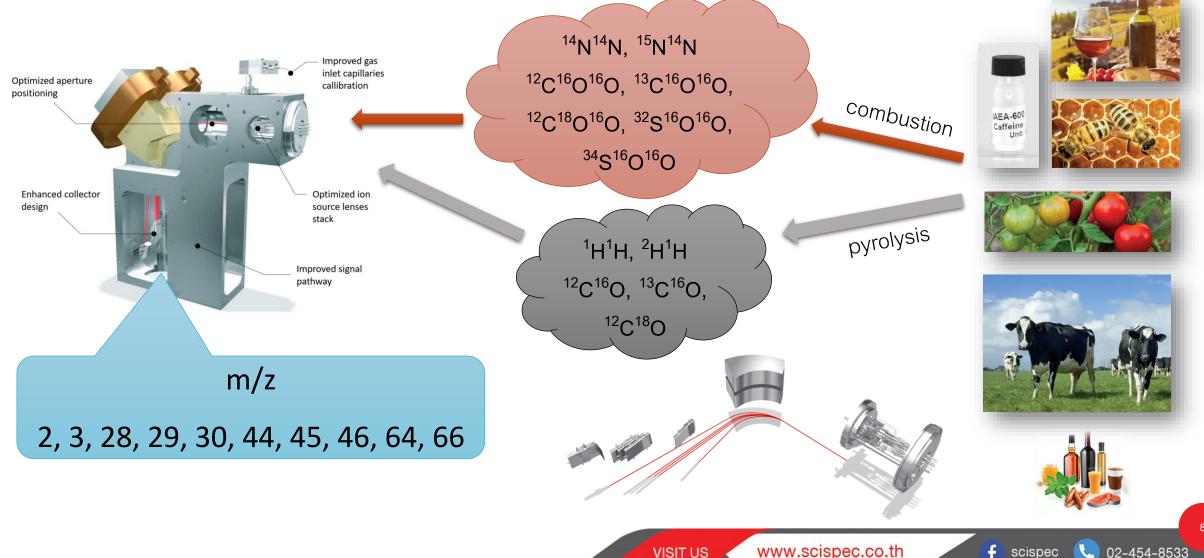

science for a changing world U.S. Geological Survey

02-454-8533 scispec

Isotope ratio mass spectrometer (IRMS)

designed to measure the relative abundances of isotopes with very high precision

The mass spectrometers used for isotopic analysis generally comprise three basic sections; an ion source, a mass analyzer and an ion collection assembly.



Jec

Isotope ratio mass spectrometry

sample need to be converted to simple gases before enter the ion source

Sci Spec

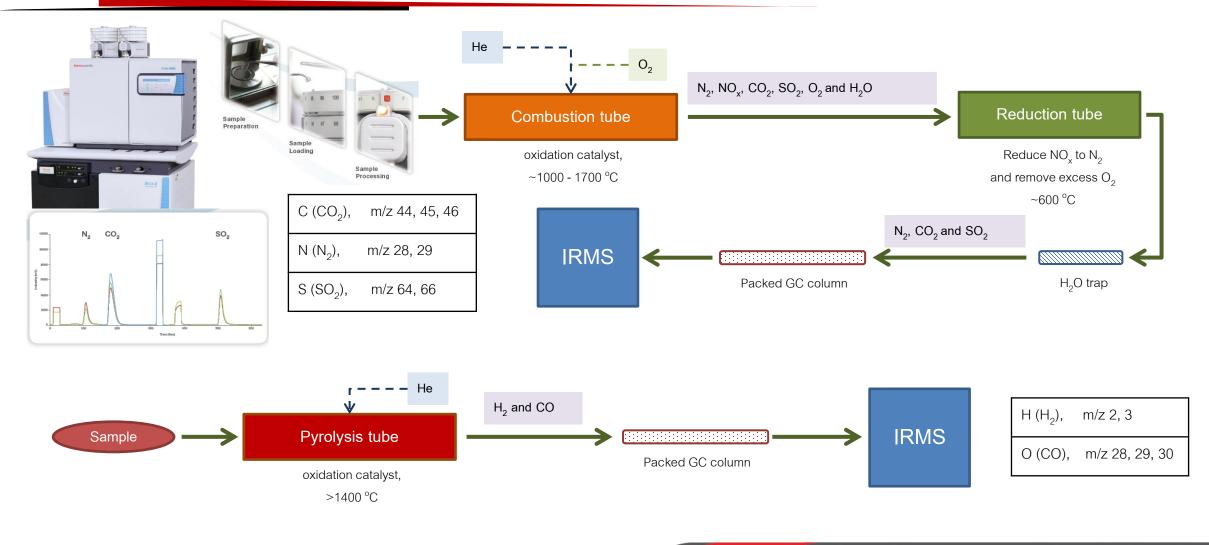
scispec

Continuous flow IRMS (CF-IRMS)

automated sample introduction and conversion

The CF-IRMS sample introduction technique consists of a helium carrier gas that carries the analyte gases into the ion source of the IRMS. This technique is used to connect an IRMS to a range of automated sample preparation devices.

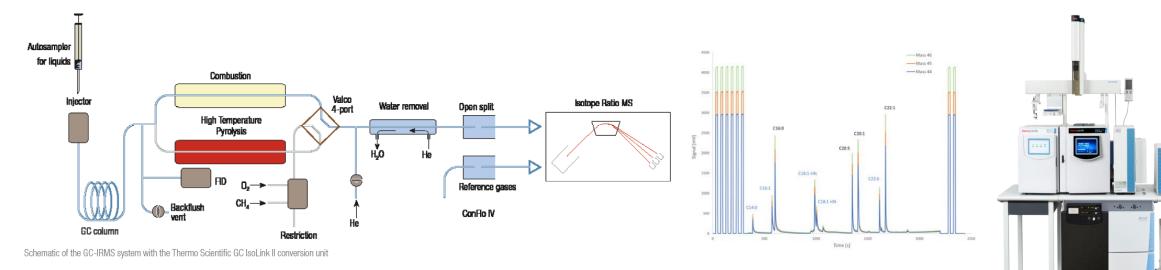
- Bulk Stable Isotope Analysis
 - Whole sample (all components) provide isotopic values
- Compound Specific Isotope Analysis
 - Each components provide individual isotopic values



Bulk Stable Isotope Analysis

based on the use of an elemental analyzer (EA-IRMS)

VISIT US www.scispec.co.th


Ғ scispec 🕓 02-454-8533

Compound Specific Isotope Analysis

based on the use of gas chromatography system (GC-IRMS)

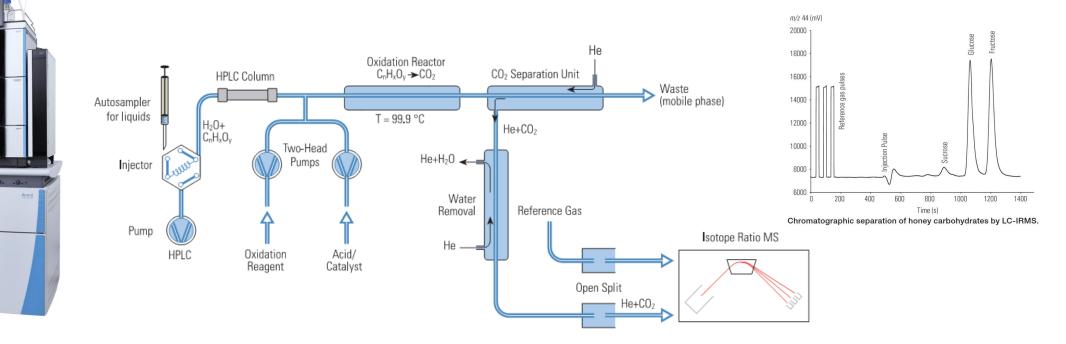
Organic compounds eluting from a GC column are converted into simple gases when traversing a capillary micro-reactor. Accordingly, all compound specific isotope ratios can be analyzed in the IRMS.

Complex organic mixtures are separated on the capillary GC column. Baseline separated peaks are the basis for high precision CSIA.

A splitter at the end of the GC column sends >95% of the sample to a combustion or pyrolysis tube. The remainder is sent to an optional FID, MS, or is vented to the atmosphere.

Compound Specific Isotope Analysis

1 111-11- 1-

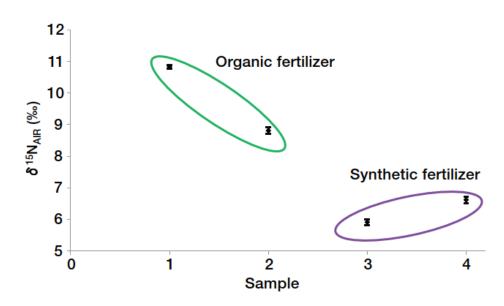

02-454-8533

scispec

based on the use of liquid chromatography system (LC-IRMS)

Quantitative oxidation of all individual organic compounds eluting from the HPLC column,

followed by fractionation-free separation of the resulting CO_2 gas from the liquid phase.

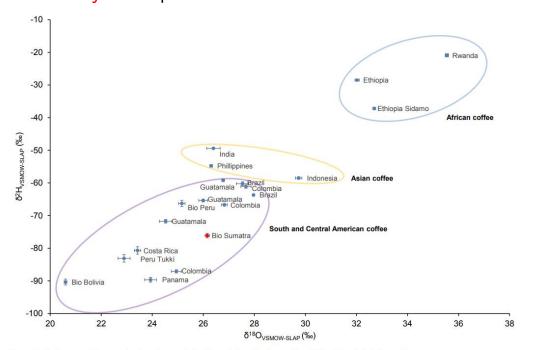


VISIT US www.scispec.co.th

Detecting organic grown vegetables

As organic fruit and vegetables attract a higher price on the market, this can lead to economically motivated fraud through mislabelling produce as "organic" when they have been grown using synthetic fertilizer.

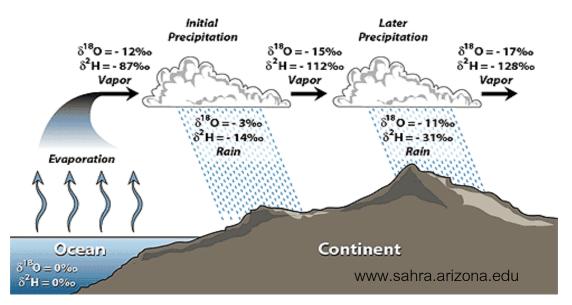
Nitrogen isotope fingerprints detect organic grown tomatoes.



Nitrogen Isotope Fingerprint
Organic vs Synthetic fertilization
Differentiation of nitrogen isotopes in plants
and soils due to ammonia volatilization,
denitrification, nitrification, etc.
Organic fertilization fingerprint: +8‰ to +20‰
Synthetic fertilization fingerprint: +3‰ to +6‰

Tracing the geographical origin of coffee

Green coffee beans have a fingerprint, a unique chemical signature that allows them to be identified: isotope fingerprints have been reliably used for origin, authenticity and product label claim verification.


Hydrogen and oxygen Isotope Fingerprints The Coffea spp plants, cultivated as the source of the coffee beans, carry an isotopic fingerprint associated with local-regional rainfall.

Differentiation of American, Asian and AfricanCoffee beans (Green and Roasted)

Identification of mislabeled coffee beans.

Isotopes in Nature

¹⁸O and ²H in the Water Cycle

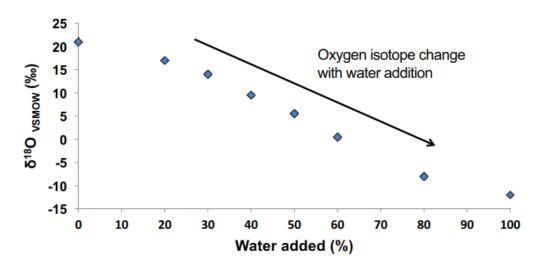
The isotopic composition of water samples can be affected by several environmental parameters :

- Seasonality
- Amount of precipitation
- Altitude
- Continentally
- Temperature

All these parameters can be characterizing the source region of a water sample.

IAEA water standard	δ ¹⁸ Ο	δ ²Η
SLAP2 (Standard Light Antarctic Precipitation 2)	-55.50 ‰	-427.5 ‰
GISP (Greenland Ice Sheet Precipitation)	-24.76 ‰	-189.5 ‰
VSMOW2 (Vienna Standard Mean Ocean Water 2)	0 ‰	0 ‰

https://nucleus.iaea.org/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/2H18O-water-samples/index.htm



Spec

Sci Spec

Tracking wine adulteration using isotope fingerprints

The most common type of wine adulteration is the addition of cheaper products to the original wine, such as fruit juices, water and sweeteners, which are not related to the grapes or fermentation process that the wine was originally produced from.

Oxygen isotope fingerprints detect watering of wine.

Oxygen Isotope Fingerprint

Geographical origin and adulteration
Grapes have local-regional rainfall
If adulterated by water or juices, oxygen
isotope fingerprint changes
Official method OIV-MS-AS2-12

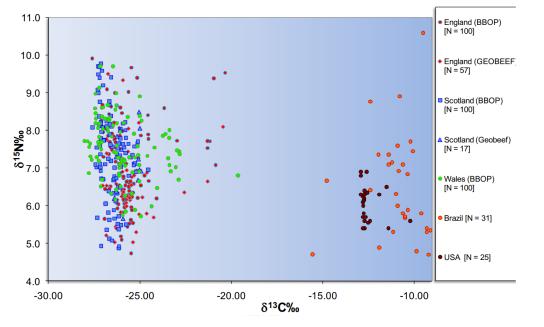
🗧 scispec 🛛 🕓 02-454-8533

Testing sugar package label claims using carbon isotope fingerprints

Sample name	δ ¹³ C _{vpDB} ± 1SD [‰, n=3]	Label claim	ldentified by ठ¹³C as	
Australia	-12.59±0.15	Not Stated	Cane sugar	
Brazil	-12.21±0.17	Not Stated	Cane sugar	
China (Shanghai)	-12.49±0.17	Not Stated	Cane sugar	
China (Nan Jing)	-12.63±0.11	Not Stated	Cane sugar	
Cuba	-12.46±0.06	Not Stated	Cane sugar	
Denmark	-26.69±0.05	Beet sugar	Beet sugar	
Egypt	-13.11±0.02	Not Stated	Cane sugar	
Estonia	-13.19±0.08	Not Stated	Cane sugar	
France	-12.14±0.12	Cane sugar	Cane sugar	
France	-12.02±0.35	Cane sugar	Cane sugar	
Germany	-26.69±0.08	Beet sugar	Beet sugar	
Italy	-12.22±0.05	Cane sugar	Cane sugar	
Ivory Coast	-12.24±0.19	Cane sugar	Cane sugar	
Lebanon	-27.08±0.02	Not Stated	Beet sugar	
Malaysia	-12.21±0.12	Not Stated	Cane sugar	
Morocco	-12.58±0.03	Not Stated	Cane sugar	
New Zealand	-12.33±0.10	Cane sugar	Cane sugar	
Philippines	-12.95±0.09	Cane sugar	Cane sugar	
Portugal	-12.51±0.04	Not Stated	Cane sugar	
Romania	-12.47±0.04	Not Stated	Cane sugar	
Senegal	-12.42±0.25	Cane sugar	Cane sugar	
Taiwan	-13.08±0.01	Not Stated	Cane sugar	
Thailand	-12.24±0.02	Not Stated	Cane sugar	
Turkey	-13.29±0.12	Not Stated	Cane sugar	
UAE	-25.02±0.02	Not Stated	Beet sugar	
United Kingdom	-12.75±0.04	Cane sugar	Cane sugar	
USA (Hawaii)	-12.41±0.13	Cane sugar	Cane sugar	
USA (San Francisco)	-12.89±0.04	Cane sugar	Cane sugar	

Carbon Isotope Fingerprint

The carbon isotope fingerprint of plants differ


because of photosynthetic processes

- C3 plants have a carbon isotope fingerprint between
- -33‰ to -22‰ and C4 plants between -16‰ to -8‰.

Can identify beet and cane sugar and verify product label

Tracing the origin of beef based on diet using carbon isotope fingerprints

Carbon and nitrogen isotope fingerprints of beef muscle.

Table 1: Features of C3 and C4 grasses

Department of Primary Industries	СЗ	C4
Initial molecule formed during photosynthesis	3 carbon	4 carbon
Growth period	Cool season or yearlong	Warm season
Light requirements	Lower	Higher
Temperature requirements	Lower	Higher

Carbon Isotope Fingerprint Pasture determines the diet of cattle Pasture varies between C3 and C4 plant groups, which result in difference in animal (i.e. dietary differences) Takes 167 days for "meat" to change from C3 to C4 signature, and vice versa

UK cattle reared on C3 diet, whilst Brazilian cattle

Detection of honey adulteration

AOAC Official Method 998.12

C-4 Plant Sugars in Honey Internal Standard Stable Carbon Isotope Ratio

Carbon Isotope Fingerprint

Honey adulteration by addition of

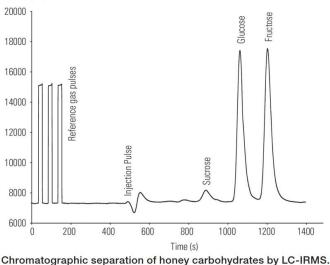
exogenous sugars

- If adulterate by sugar addition,
 carbon isotope fingerprint changes
- Official method AOAC 998.12

LC-IRMS and EA_IRMS analysis of eight honey samples.

Honey	Sucrose ‰	Glucose ‰	Fructose ‰	Fru/Glu ratio of areas	EA Honey (4) ‰	EA Prot. (4) ‰	Adult. (4) ‰
1	-23.3	-23.2	-22.9	1.07	-21.8	-24.2	16.7
2	-11.3	-11.2	-13.9	0.65	-11.9	n.a.	n.a.
3	-25.3	-24.9	-24.9	1.42	-24.8	-24.8	0.0
4	-26.4	-26.5	-26.4	0.97	-25.4	-21.6	0.0
5	n.d.	-26.1	-26.0	4.53	-25.8	-26.1	1.9
6	-26.1	-25.0	-25.3	1.62	-24.3	-24.3	0.0
7	-25.0	-25.2	-25.1	1.16	-24.2	-24.7	3.4
8	n.d.	-25.1	-26.4	2.17	-24.8	-25.1	1.5

Carbon isotope fingerprints of three honeys and their extracted proteins.


	Honey-1	Protein-1	Honey-2	Protein-2	Honey-3	Protein-3
Average (‰)	-23.58	-24.05	-23.82	-23.91	-24.10	-24.28
1 sd (‰)	0.06	0.05	0.05	0.07	0.05	0.20

Calculate apparent C-4 sugar content as follows:

C-4 sugars,
$$\% = \frac{\delta^{13}C_{P} - \delta^{13}C_{H}}{\delta^{13}C_{P} - (-9.7)} \times 100$$

where $\delta^{13}C_p$ and $\delta^{13}C_H$ are $\delta^{13}C$ values, ‰, for protein and honey, respectively, and –9.7 is the average $\delta^{13}C$ value for corn syrup, ‰. Report negative values from this calculation as 0%. Product is considered to contain significant C-4 sugars (primarily corn or cane) only at or above a value of 7%.

SCISPEC

CRM@SCISPEC.CO.TH

thermo scientific

Authorized Distributor

LCTech × 908 devices

