Metabolomics and Bioactive compound Discovery: The Foundation for Future Medicine Asst. Prof. Arnatchai Maiuthed, Ph.D., Dr.rer.nat. Department of Pharmacology, Faculty of Pharmacy, Mahidol University Head of Centre of Biopharmaceutical Science for Healthy Ageing # **Herbal medicine market:** # **Biodiversity in Thailand:** # ระบบคลังข้อมูลความหลากหลายทางชีวภาพของประเทศไทย THAILAND BIODIVERSITY INFORMATION FACILITY (TH-BIF) บทบาทในฐานะศูนย์ข้อมูลกลางด้านความหลากหลายทางชีวภาพ เป็นระบบเครือข่ายที่รวบรวมและเชื่อมโยงข้อมูลสิ่งมีชีวิตในประเทศไทย ระหว่างหน่วยงานและภาคส่วนที่เกี่ยวข้อง เพื่อให้ทุกคนสามารถเข้าถึงและใช้ประโยชน์ข้อมูลร่วมกัน ปัจจุบันระบบคลังข้อมูลฯ ได้มีการนำเข้าและเชื่อมต่อข้อมูล จากหน่วยงานเครือข่ายแล้ว มากกว่า 120,000 รายการ # **Plant-derived natural medicinal products** | Plant-Derived Natural Products | Botanical Source | Medicinal Application | |--------------------------------|--|--------------------------------| | Atropine | Atropa belladonna L. | Anticholinergic | | Berberine | Berberis vulgaris L. | Bacillary dysentery | | Caffeine | Camellia sinensis (L.) Kuntze | Neuroprotection | | Camptothecin | Camptotheca acuminata Decne. | Anticancer | | Cocaine | Erythroxylum coca Lam. | Anesthetic | | Colchicine | Colchicum autumnale L. | Antigout, antitumor | | Convallatoxin | Convallaria majalis L. | Cardiotonic | | Digitoxin | Digitalis purpurea L. | Cardiotonic | | Digoxin | Digitalis lanata Ehrh. | Cardiotonic | | Ephedrine | Ephedra sinica Stapf | Sympathomimetic | | Glaucine | Ġlaucium flavum Ĉrantz | Antitussive | | Glycyrrhizin | Glycyrrhiza glabra L. | Treatment of Addison's disease | | Morphine | Papaver somniferum L. | Analgesic | | Ouabain | Strophanthus gratus (Wall. & Hook.) Baill. | Cardiotonic | | Quinine | Cinchona officinalis L. | Antimalarial | | Reserpine | Rauvolfia serpentina (L.) Benth. ex Kurz | Antihypertensive | | Salicin | Salix alba L. | Analgesic | | Scopolamine | Datura metel L. | Sedative | | Silymarin | Silybum marianum (L.) Gaertn. | Antihepatotoxic | | Taxol | Taxus brevifolia Nutt. | Anticancer | | Theophylline | Theobroma cacao L. | Diuretic | | Thymol | Thymus vulgaris L. | Topical antifungal | | Vinblastine | Catharanthus roseus (L.) G.Don | Anticancer | | Vincristine | Catharanthus roseus (L.) G.Don | Anticancer | | Yuanhuacine | Daphne genkwa Siebold & Zucc. | Abortifacient | # Traditional workflow to elucidate herbal bio-active compound: # Metabolomics and Network Pharmacology: New drug discovery workflow Components UPLC-Q-TOF-MS # scientific reports OPEN Integrated network pharmacology and metabolomics reveal the mechanisms of Jasminum elongatum in anti-ulcerative colitis Jinyan Qiu¹, Guanlin Xiao², Minjuan Yang¹, Xuejun Huang², Dake Cai², Canhui Xie¹, Zhao Chen², Xiaoli Bi^{1,250} & Alii Xu^{1,250} Jasminum elongatum # **Metabolomics** # Network pharmacology # Compound-Reaction-Enzyme-Gene Networks # Immunohistochemistry verification # **Metabolomics for plant metabolite identification** ## **scientific** reports Check for updates Network pharmacology and metabolomics analysis of Tinospora cordifolia reveals BACE1 and MAOB as potential therapeutic targets for neuroprotection in Alzheimer's disease .C-MS/MS analysis Tinospora cordifolia Metabolite extract Tinospora cordifolia (Guduchi) climber shrub stem powder Identification of In vitro validation metabolite & target-protein Pharmacological network of MZmine 2.31 analysis Tinospora cordifolia Workflow of metabolite extraction from T. *cordifolia* stem poder, LC-MS/MS followed by MZmine tool and subsequent bioinformatics analysis and *in vitro* validation of neuroprotective activity Representative of total ion chromatogram of T. cordifolia metabolite analysis in positive mode # Metabolomics for plant metabolite identification ### **scientific** reports OPEN Network pharmacology and metabolomics analysis of *Tinospora cordifolia* reveals BACE1 and MAOB as potential therapeutic targets for neuroprotection in Alzheimer's disease S. Amrutha¹, Chandran S. Abhinand¹, Shubham Sukerndeo Upadhyay¹, Ravishankar Parvaje², Thottethodi Subrahmanya Keshava Prasad^{©1} & Prashant Kumar Modi^{©1} ### List of Intense Metabolite Identified in T. cordifolia | m/z, (Da) | Retention time, minutes | Metabolite identification | Peak intensity | Polarity | |-----------|-------------------------|--|----------------|----------| | 432.84 | 10.81 | 3-(3,5-Diiodo-4-hydroxyphenyl)pyruvate | 3.27E+10 | + | | 414.96 | 10.81 | Perfluorooctanoic acid | 3.8E+10 | + | | 785.88 | 29.62 | 1-Cyclohexyl-11-heneicosanone | 3.7E+10 | + | | 605.16 | 32.05 | 5,7,3'-Trihydroxy-4'-methoxyflavanone | 3.5E+10 | + | | 757.8 | 30.67 | Erucoylacetone | 3.2E+10 | + | | 352.2 | 29.02 | O-sinapoylcholine | 9.21E+09 | + | | 338.16 | 32.33 | Deoxynivalenol | 3.2E+09 | + | | 542.76 | 1.36 | Cyclolinopeptide F | 2.7E+09 | + | | 271.92 | 7.36 | Di-2-thienyl disulfide | 5.13E+09 | + | | 383.16 | 9.88 | Cassythine | 1.4E+09 | + | | 144.96 | 7.55 | thioacrolein | 1.4E+09 | + | | 183.96 | 30.07 | Arsenate | 1.3E+09 | + | | 339.48 | 31.88 | N-Dodecane | 2.1E+08 | - | | 742.32 | 30.96 | Agavoside F | 1.9E+08 | - | | 309.12 | 25.54 | Ilicifolinoside A | 1.4E+07 | - | | 692.76 | 16.48 | Captafol | 2.3E+07 | - | | 343.2 | 14.28 | corynantheal | 2.4E+07 | - | | 387.12 | 8.56 | Dictyoquinazol C | 3.7E+08 | - | | 175.2 | 1.01 | Putrescine | 2.4E+07 | - | | 293.04 | 7.98 | Wasalexin A | 3.2E+07 | - | | 315.12 | 6.04 | Hypoglycin B | 1.1E+08 | - | | 371.06 | 15.87 | psoralen | 3.3E+07 | - | | 328.08 | 12.81 | Avenanthramide 1p | 5.6E+07 | - | | 369.12 | 8.44 | Linusitamarin | 6.2E+07 | - | | 71.88 | 1.70 | Unassigned | 3.4E+09 | + | | 609.72 | 11.09 | Unassigned | 7.8E+08 | + | | 83.88 | 1.42 | Unassigned | 7.6E+08 | + | | 788.88 | 30.31 | Unassigned | 1.4E+09 | + | | 585.84 | 13.09 | Unassigned | 3E+08 | + | | 83.88 | 4.10 | Unassigned | 2.9E+07 | + | | 682.8 | 9.38 | Unassigned | 1.6E+08 | + | | 788.88 | 28.31 | Unassigned | 1.5E+09 | + | | 338.42 | 13.50 | Unassigned | 5E+07 | - | | 608.82 | 10.36 | Unassigned | 1E+08 | - | | 357.72 | 9.94 | Unassigned | 2E+07 | - | | 326.52 | 9.13 | Unassigned | 3E+07 | - | | 686.88 | 10.47 | Unassigned | 2E+07 | - | | 135.24 | 1.25 | Unassigned | 5E+07 | - | | 413.64 | 10.95 | Unassigned | 2E+07 | - | | 406.44 | 8.80 | Unassigned | 1E+07 | - | ### List of Metabolite that are not Identified in T. cordifolia | m/z, (Da) | Retention time, minutes | Metabolite identification | Peak intensity | Polarity | |-----------|-------------------------|---------------------------|----------------|----------| | 352.32 | 32.05 | 11Z-Eicosenoic acid | 1.69E+10 | + | | 198 | 20.84 | Selenomethionine | 6.2E+07 | + | | 201 | 18.24 | Poppy acid | 1.7E+09 | + | | 159.12 | 4.87 | Betaine | 1E+08 | + | | 758.16 | 31.69 | Theaflavin-3-gallate | 4.99E+09 | + | | 366.96 | 10.81 | Se-Methylselenocysteine | 3.78E+09 | + | | 504 | 32.86 | Quercetin 3,3'-bissulfate | 1.22E+09 | + | | 194.04 | 4.87 | Shoyuflavone A | 1.15E+09 | + | | 720.12 | 31.69 | Norbadione A | 7.59E+08 | + | | 438.72 | 20.87 | Gliadorphin | 4.65E+08 | + | | 312.12 | 30.79 | pinostrobin | 4.02E+09 | + | | 164.04 | 8.96 | Fertaric acid | 1.09E+08 | + | | 339.24 | 30.93 | Plastoquinone 3 | 2.45E+08 | - | | 417.12 | 12.25 | Liquiritin | 1.3E+07 | - | | 430.92 | 10.82 | Nitroprusside | 2.1E+09 | - | | 743.04 | 32.40 | Gluconapin | 8.3E+07 | - | | 538.92 | 12.11 | Chymopapain | 1.7E+07 | - | | 179.52 | 36.15 | Glucoputranjivin | 1.7E+07 | - | | 711.62 | 4.71 | Conessine | 1.1E+07 | - | | 889.08 | 33.10 | Baicalin | 5E+06 | - | | 133.08 | 1.56 | 3-Butenenitrile | 1.5E+08 | - | # Four major omics fields, genomics, transcriptomics, proteomics and metabolomics 🚺 # **Metabolomics: The challenges of analytical** • Diversity in structures and physical chemical properties - Require multiple technologies to capture a metabolome - Many isomeric and isobaric species - Require high resolving power for correct ID - Very low to very high concentrations - Require High sensitivity and wide dynamic range - No single database to identify all unknown metabolites - Require extensive library or fragment ion prediction based on compound structure # **Metabolomics: The challenges of analytical** Metabolites 2022, 12, 1002. https://doi.org/10.3390/metabo12101002 ### Metabolites triglycerides cholesterol esters diacylglycerols sphingomyelines phosphatidylcholines phosphatidylethanolamines other phospholipids fatty acids eicosanoids & metabolites bile acids bilirubin amino acids, amines organic acids sugars Other polar: e.g. purines & pyrimidines | D-Glucose or Paraxanthine? | 179.060 | |--|---------| | | | | >500,000 Resolution By By By So D-glucose 179,0561 or 179,0575? | | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.C | |---------------------------|---|---|---|---|---|-------| | Reactome
Knowledgebase | Homo-sapiens | It contains visualization,
interpretation, and
analysis of pathway
knowledge. Available
tools: SkyPainter,
PathFinder, BioMart,
Reactome Gene Set
Analysis (ReactomeGSA)
and Reactome IDG Portal. | Human Pathways:2546
Reactions:13890
Proteins:1020
Small Molecules:1940
Drugs:507 | Free | Reactome.org
(accessed on 1 April 2022) | 20 | | ВіоСус | | A comprehensive reference
containing listed data from
130,0000
publications—available
tools: Pathologic, Genome
browser, Pathway Tools,
BLAST search, and
SmartTables. | Pathway/Genome
Databases (PGDBs):
19,494
Archaea:
465 databases
Bacteria:
18,956 databases
Eukaryota:
37 databases
MetaCyc:
Metabolic
Encyclopedia | EcoCyc and MetaCyc
databases: free access.
Others: Paid
subscription | Biocycorg
(accessed on 1 April 2022) | 19 | | MetaCyc | Eukaryotes | Serves as a comprehensive
reference to metabolic
pathways and enzymes.
Available tools: Pathologic,
Genome browser, BLAST
search, Pathways Tools,
Google™. | Multi-organisms: 3295
Metabolic
pathways:2937
Enzymatic
reactions:17,310 | Free | MetaCyc.org
(accessed on 1 April 2022) | 19 | | EcoCyc | Bacterial organism:
Escherichia coli K-12
MG1655 | Contains Metabolic
Network Explorer, Circular
Genome Viewer | Genes:4518
Enzymes:1682
Metabolic
reactions:2151 | Free | EcoCyc.org
(accessed on 1 April 2022) | 19 | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | | HMDB | Homo-sapiens | A human metabolomics
database. It has spectral
and pathway visualization
tools. Available tools: Data
Extractor, ChemSketch,
BLAST search,
MetaboCard, MS and
NMR spectral search
utility,
MetaboLIMS. | Annotated metabolite
entries: 217,920 | Free | https://hmdb.ca
(accessed on 1 April 2022) | 2007 | | ChemSpider | Eukaryotes
Bacteria and Archae | A chemical structure database. | Chemical entities:114
Million | Free | chemspider.com
(accessed on 1 April 2022) | 2007 | | MetaboLights | Eukaryotes
Bacteria and Archae | An open-access database repository for cross-platform and cross-species metabolomics research. | Different organisms:
6510
Reference
compounds:27,475
Metabolite annotation
features:2016,457 | Free | https://www.ebi.ac.uk/
metabolights
(accessed on 1 April 2022) | 2012 | | Metabolomics
Workbench | Eukaryotes
Bacteria and Archae | A repository for
metabolomics data and
metadata and provides
analysis tools and access to
metabolite standards,
protocols, tutorials,
training, and more. | Discrete
structures:136,000
Genes:7300
Proteins:15,500 | Free | metabolomicsworkbench.
org
(accessed on 1 April 2022) | 2016 | | SMPDB | Eukaryotes
Bacteria and Archae | A pathway database for
different model organisms
such as humans, mice, E.
coli, yeast, and
Arabidopsis thaliana. | Pathways Number:
48,690
Metabolites Number
(non-redundant):
55,700 | Free | https://smpdb.ca/
(accessed on 1 April 2022) | 2009 | | MetSigDis | Homo-sapiens, Rat,
Mouse, Drosophila
melanogaster,
Triatomine, Mice, Piş | provide a comprehensive | Curated
relationships:6849
Metabolites:2420
Diseases:129 | Free | http://www.bio-
annotation.cn/MetSigDis/
(accessed on 1 April 2022) | 2017 | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | |----------------------------|--|---|--|---------------|---|-------| | BIGG Models | Eukaryotes,
Prokaryotes, and
Photosynthetic
Eukaryotes. | Provides pathway
visualization with Escher.
It also offers standardized
identifiers for metabolites,
reactions, and genes. | It contains more than
75 high-quality
manually-curated
genome-scale
metabolic models. | Free | BIGG.ucsd.edu
(accessed on 1 April 2022) | 2007 | | KEGG | Eukaryotes
Bacteria and
Archaea. | PATHIWAY database,
KEGG NETWORK
database, KO annotation
and taxonomy, drug
information, and virus-cell
interaction. Available tools:
KEGG Atlas, KegHier,
KegArray, KegDraw,
KegTools, KEGG2, KEGG
API. | KEGG organisms: 7760
(Eukaryotes: 695,
Bacteria:6694,
Archaea:371).
KEGG modules: 456
Reaction modules:46 | Free | www.kegg.jp/
(accessed on 1 April 2022) | 1995 | | BRENDA | Eukaryotes
Bacteria and
Archaea. | Comprises disease-related
data, protein sequences,
3D structures, genome
annotations, ligand
information, taxonomic,
bibliographic, and kinetic
data. | Number of different
enzymes: 8197 | Free | www.brenda-enzymes.org
(accessed on 1 April 2022) | 1987 | | PubChem | Eukaryotes
Bacteria and Archaea | Provides chemical and
physical properties,
biological activities, safety
and toxicity information,
patents, literature citations,
and more. Available tools:
PubChem Structure Editor,
Entrez, PubChem3D,
PubChem Download
Facility, ToxNet. | Compounds:110
million,
Substances:277 million,
Bioactivities:293
million. | Free | PubChem.ncbi.nlm.nih.
gov
(accessed on 1 April 2022) | 2004 | | ChEBI | Eukaryotes
Bacteria and Archaea | A database and ontology
containing information
about chemical entities of
biological interest. | Annotated compounds: 59,708 | Free | www.ebi.ac.uk/chebi
(accessed on 1 April 2022) | 2010 | | | | | | | | | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | | Virtual Metabolic
Human | Homo-sapiens | Captures human and gut
microbial metabolism
information and links it to
hundreds of diseases and
nutritional data. | Reactions:19,313
Metabolites:5607
Human genes:3695
Diseases:255
Foodstuff:8790 | Free | www.vmh.life
(accessed on 1 April 2022) | 2018 | | Pathway Commons | Eukaryotes
Bacteria and Archaea | Aims to collect and
disseminate biological
pathway and interaction
data | Pathways:5772
Interactions:2,424,055
Databases:22 | Free | https://www.
pathwaycommons.org
(accessed on 1 April 2022) | | | WikiPathways | Eukaryotes
Bacteria and Archaea | A public, collaborative
platform devoted to the
curation of biological
pathways | Human genes: 11,532
Number of pathways:
3013 | Free | wikipathways.org
(accessed on 1 April 2022) | 2008 | | RaMP | Eukaryotes
Bacteria and Archaea | A multi-database integration approach for gene/metabolite enrichment analysis providing interactive tables of query results, interactive tables of pathway analysis results, and clustering of enriched pathways by pathway similarity | Pathways: 51,526 (from
KEGG, Reactome,
SMPDB, and
WikiPathways)
Genes: 23,077
Metabolites: 113,725 | Free | https://github.com/
mathelab/RaMP-DB/or
https:
//github.com/mathelab/
RaMP-DB/inst/extdata/
(accessed on 1 April 2022) | | | MENDA | Organisms include:
Human,
Rat,
Mouse, and | A comprehensive
metabolic characterization
database for depression. | Differential expressed
metabolites: 5675.
(Humans:1347
Rat:3127
Mouse:1105 | Free | Menda.cqmu.edu.cn:
8080/index.php
(accessed on 1 April 2022) | 2020 | # What is Mass Spectrometry? The basis in mass spectrometry (MS) is the <u>production</u> of **ions**, that are subsequently <u>separated or filtered</u> according to their <u>mass-to-charge (m/z) ratio</u> and <u>detected</u>. # LC-MS/MS # Separation: Mass detector # Chromatography UHPLC-nano flow UHPLC-micro flow GC # MS/MS Quadrupole-TOF Quadrupole-Orbitrap Tribrid # **Data from LCMS** # m/z = (molecular weight + charge) / charge # MS/MS data # **Metabolomics database** | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | |---------------------------|--|---|---|---|--|-------| | Reactome
Knowledgebase | Homo-sapiens | It contains visualization,
interpretation, and
analysis of pathway
knowledge. Available
tools: SkyPainter,
PathFinder, BioMart,
Reactome Gene Set
Analysis (ReactomeGSA)
and Reactome IDG Portal. | Human Pathways:2546
Reactions:13890
Proteins:1020
Small Molecules:1940
Drugs:507 | Free | Reactome.org
(accessed on 1 April 2022) | 2005 | | ВіоСус | Eukaryotes
Bacteria and
Archaea. | A comprehensive reference
containing listed data from
130,000
publications—available
tools: Pathologic, Genome
browser, Pathway Tools,
BLAST search, and
SmartTables. | Pathway/Genome
Databases (PGDBs):
19,494
Archaea:
465 databases
Bacteria:
18,956 databases
Eukaryota:
37 databases
MetaCyc:
Metabolic
Encyclopedia | EcoCyc and MetaCyc
databases: free access.
Others: Paid
subscription | Biocyc.org
(accessed on 1 April 2022) | 1997 | | MetaCyc | Eukaryotes
Bacteria and
Archaea. | Serves as a comprehensive
reference to metabolic
pathways and enzymes.
Available tools: Pathologic,
Genome browser, BLAST
search, Pathways Tools,
Google™. | Multi-organisms: 3295
Metabolic
pathways:2937
Enzymatic
reactions:17,310 | Free | MetaCyc.org
(accessed on 1 April 2022) | 1999 | | ЕсоСус | Bacterial organism:
Escherichia coli K-12
MG1655 | Contains Metabolic
Network Explorer, Circular
Genome Viewer | Genes:4518
Enzymes:1682
Metabolic
reactions:2151 | Free | EcoCyc.org
(accessed on 1 April 2022) | 1995 | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | |---------------------------|---|---|---|---------------|---|-------| | HMDB | Homo-sapiens | A human metabolomics
database. It has spectral
and pathway visualization
tools. Available tools: Data
Extractor, ChemSketch,
BLAST search,
MetaboCard, MS and
NMR spectral search
utility,
MetaboLIMS. | Annotated metabolite entries: 217,920 | Free | https://hmdb.ca
(accessed on 1 April 2022) | 2007 | | ChemSpider | Eukaryotes
Bacteria and Archaea | A chemical structure database. | Chemical entities:114
Million | Free | chemspider.com
(accessed on 1 April 2022) | 2007 | | MetaboLights | Eukaryotes
Bacteria and Archaea | An open-access database
repository
for cross-platform and
cross-species
metabolomics research. | Different organisms:
6510
Reference
compounds:27,475
Metabolite annotation
features:2016,457 | Free | https://www.ebi.ac.uk/
metabolights
(accessed on 1 April 2022) | 2012 | | Metabolomics
Workbench | Eukaryotes
Bacteria and Archaea | A repository for
metabolomics data and
metadata and provides
analysis tools and access to
metabolite standards,
protocols, tutorials,
training, and more. | Discrete
structures:136,000
Genes:7300
Proteins:15,500 | Free | metabolomicsworkbench.
org
(accessed on 1 April 2022) | 2016 | | SMPDB | Eukaryotes
Bacteria and Archaea | A pathway database for
different model organisms
such as humans, mice, E.
coli, yeast, and
Arabidopsis thaliana. | Pathways Number:
48,690
Metabolites Number
(non-redundant):
55,700 | Free | https://smpdb.ca/
(accessed on 1 April 2022) | 2009 | | MetSigDis | Homo-sapiens, Rat,
Mouse, Drosophila
melanogaster,
Triatomine, Mice, Pig,
and Mus musculus. | A manually curated
resource that aims to
provide a comprehensive
resource of metabolite
alterations in various
disease. | Curated
relationships:6849
Metabolites:2420
Diseases:129
Species: 8 | Free | http://www.bio-
annotation.cn/MetSigDis/
(accessed on 1 April 2022) | 2017 | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | |-------------|--|---|--|---------------|--|-------| | BIGG Models | Eukaryotes,
Prokaryotes, and
Photosynthetic
Eukaryotes. | Provides pathway
visualization with Escher.
It also offers standardized
identifiers for metabolites,
reactions, and genes. | It contains more than
75 high-quality
manually-curated
genome-scale
metabolic models. | Free | BIGG.ucsd.edu
(accessed on 1 April 2022) | 2007 | | KEGG | Eukaryotes
Bacteria and
Archaea. | PATHWAY database,
KEGG NETWORK
database, KO annotation
and taxonomy, drug
information, and virus-cell
interaction. Available tools:
KEGC Atlas, KegHer,
KegArray, KegDraw,
KegTools, KEGC2, KEGG
AFL | KEGG organisms: 7760
(Eukaryotes: 695,
Bacteria:6694,
Archaea:371).
KEGG modules: 456
Reaction modules:46 | Free | www.kegg.jp/
(accessed on 1 April 2022) | 1995 | | BRENDA | Eukaryotes
Bacteria and
Archaea. | Comprises disease-related
data, protein sequences,
3D structures, genome
annotations, ligand
information, taxonomic,
bibliographic, and kinetic
data. | Number of different
enzymes: 8197 | Free | www.brenda-enzymes.org
(accessed on 1 April 2022) | 1987 | | PubChem | Eukaryotes
Bacteria and Archaea | Provides chemical and
physical properties,
biological activities, safety
and toxicity information,
patents, literature citations,
and more. Available tools:
PubChem Structure Editor,
Entrez, PubChem3D,
PubChem Download
Facility, ToxNet. | Compounds:110
million,
Substances:277 million,
Bioactivities:293
million. | Free | PubChem.ncbi.nlm.nih.
gov
(accessed on 1 April 2022) | 2004 | | ChEBI | Eukaryotes
Bacteria and Archaea | A database and ontology
containing information
about chemical entities of
biological interest. | Annotated compounds: 59,708 | Free | www.ebi.ac.uk/chebi
(accessed on 1 April 2022) | 2010 | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | VOE | | Database | Organisms | Database Descriptions | Coverage | Accessibility | Link | Y.O.R | |----------------------------|--|--|---|---------------|---|-------| | Virtual Metabolic
Human | Homo-sapiens | Captures human and gut
microbial metabolism
information and links it to
hundreds of diseases and
nutritional data. | Reactions:19,313
Metabolites:5607
Human genes:3695
Diseases:255
Foodstuff:8790 | Free | www.vmh.life
(accessed on 1 April 2022) | 2018 | | Pathway Commons | Eukaryotes
Bacteria and Archaea | Aims to collect and
disseminate biological
pathway and interaction
data | Pathways:5772
Interactions:2,424,055
Databases:22 | Free | https://www.
pathwaycommons.org
(accessed on 1 April 2022) | | | WikiPathways | Eukaryotes
Bacteria and Archaea | A public, collaborative
platform devoted to the
curation of biological
pathways | Human genes: 11,532
Number of pathways:
3013 | Free | wikipathways.org
(accessed on 1 April 2022) | 2008 | | RaMP | Eukaryotes
Bacteria and Archaea | A multi-database integration approach for gene/metabolite enrichment analysis providing interactive tables of query results, interactive tables of pathway analysis results, and clustering of enriched pathways by pathway similarity | Pathways: 51,526 (from
KEGG, Reactome,
SMPDB, and
WikiPathways)
Genes: 23,077
Metabolites: 113,725 | Free | https://github.com/
mathelab/RaMP-DB/or
https:
//github.com/mathelab/
RaMP-DB/inst/extdata/
(accessed on 1 April 2022) | | | MENDA | Organisms include:
Human,
Rat,
Mouse, and
Non-human
primates. | A comprehensive
metabolic characterization
database for depression. | Differential expressed
metabolites: 5675.
(Humans:1347
Rat:3127
Mouse:1105
Non-human
primates:96) | Free | Menda.cqmu.edu.cn:
8080/index.php
(accessed on 1 April 2022) | 2020 | # compound databases commonly used for compound identification. | Database | Targets | Description | |-----------------|---------------------|------------------------------------| | PubChem [32] | All small molecules | Small molecules, metadata | | ChemSpider [33] | All small molecules | Small molecules, curated data | | KEGG [34] | Metabolites | Pathway database, multiple species | | MetaCyc [35] | Metabolites | Pathway database, multiple species | | BRENDA [36] | Enzymes | Enzyme and metabolism data | | HMDB [37] | Metabolites | Human metabolites | | CHEBI [38] | Small molecules | Molecules of biological interest | | UNPD [39] | Metabolites | Secondary plant metabolites | | MINE [40] | Metabolites | In silico predicted metabolites | PubChem, ChemSpider or the Chemical Abstracts Database is larger than 120 million compounds. The number of compounds with biological relevance is estimated at 1–2 million # mass spectral databases commonly used for compound annotations | Database | Targets | Description | |---------------|------------------|-------------------------------------| | NIST | EI-MS, CID-MS/MS | Curated DB, graphical interface | | WILEY | EI-MS, CID-MS/MS | Largest collection of EI-MS data | | METLIN [51] | CID-MS/MS | Developed for QTOF instruments | | MoNA | EI, MS/MS, MSn | Autocurated collection of spectra | | MassBank [52] | EI, MS/MS, MSn | Longest standing community database | | mzCloud [53] | MSn | Multiple stage MSn | | GNPS [54] | MS/MS | Community database | | ReSpect [55] | MS/MS, RT | Plant metabolomics database | # Metabolomics for plant metabolite identification ## **scientific** reports Check for updates Network pharmacology and metabolomics analysis of Tinospora cordifolia reveals BACE1 and MAOB as potential therapeutic targets for neuroprotection in Alzheimer's disease .C-MS/MS analysis Tinospora cordifolia Metabolite extract Tinospora cordifolia (Guduchi) climber shrub stem powder Identification of In vitro validation metabolite & target-protein Pharmacological network of MZmine 2.31 analysis Tinospora cordifolia Workflow of metabolite extraction from T. *cordifolia* stem poder, LC-MS/MS followed by MZmine tool and subsequent bioinformatics analysis and *in vitro* validation of neuroprotective activity Representative of total ion chromatogram of T. cordifolia metabolite analysis in positive mode # Network Pharmacology: Protein targets of *T. cordifolia* metabolites # 1546 protein interactions - 346 proteins: exact structural matches - 1200 proteins: similarity matches Human protein classification based on molecular function, biological process and cellular localization # Network Pharmacology: Protein targets of *T. cordifolia* metabolites Protein-protein interacting network of protein targets of T. *cordifolia* a-b. S-adenosyl-Lmethionine against BACE1 c-d. Palmatine against MAO-B # In vitro validation # Metabolomics: Bioavailable (BAL) fraction of *Albizia lebbeck* (L.) Benth. # มหาวิทยาลัยมหิดล สถาบันโภชนาการ รศ.คร.มลฤดี สูงประสานทรัพย์ หน่วยพิษวิทยาทางอาหาร สถาบันโภชนากร มหาวิทยาลัยมหิดล oavailable fraction from the edible leaf of Albizia lebbeck (L.) Benth. inhibits neurotoxicity in human microglial HMC3 cells and promotes lifespan in Protective effect of BAL on glutamate-induced toxicity in HMC3 cells Effect of BAL on longevity of C. elegans Effect of BAL on SOD-3 expression in *C. elegans* Control Effect of BAL on glutamateinduced apoptotic signaling activation in HMC3 cells Amino acid interactions of Bax with candidate ligands Identification of bioactive compounds in BAL using UHPLC-Q-Orbitrap-(Exploris 480) | Ion mode | Compound name | Molecular
formula | Rt
(min) | m/z
calculated | m/z
observed | Error
(ppm) | |----------|-----------------|---|-------------|-------------------|-----------------|----------------| | Positive | Quercetin-3β-D- | C ₂₁ H ₂₀ O ₁₂ | 13.324 | 464.09379 | 465.10107 | -3.63 | | | glucoside | | | | | | | | Robinetin | $C_{15}H_{10}O_7$ | 13.498 | 302.0416 | 303.04887 | -3.5 | | | Vitexin | $C_{21}H_{20}O_{10}$ | 13.749 | 432.10414 | 433.11142 | -3.48 | | | Kaempferol | $C_{15}H_{10}O_6$ | 14.062 | 286.04678 | 287.05405 | -3.36 | | | Kuromanin | $C_{21}H_{20}O_{11}$ | 14.765 | 448.09884 | 449.10612 | -3.84 | | | Daidzein | C ₁₅ H ₁₀ O ₄ | 15.66 | 254.05841 | 255.06569 | 1.98 | | | Tanshinon I | $C_{18}H_{12}O_3$ | 21.174 | 276.0793 | 277.08658 | 2.38 | | | Nootkatone | C ₁₅ H ₂₂ O | 38.014 | 218.16739 | 219.17467 | 1.49 | | Negative | Rutin | C ₂₇ H ₃₀ O ₁₆ | 13.665 | 610.15274 | 609.14546 | -1.06 | | | Luteolin | $C_{15}H_{10}O_{6}$ | 14.772 | 286.04748 | 285.0402 | -0.9 | # Metabolomics: Beagle dog's plasma metabolome-PK-omics correlation รศ.คร.ภก.พิสิฐ เขมาวุฆฒ์ สถาบันการแพทย์จักรีนฤบดินทร์ โรงพยาบาลรามาธิบดี # scientific reports Explore content > About the journal > Publish with us > nature > scientific reports > articles > article Bioenhancing effects of piperine and curcumin on triterpenoid pharmacokinetics and neurodegenerative metabolomes from *Centella asiatica* extract in beagle Time (h) Day 1 Plasma concentration—time profiles of major bioactive triterpenoids from *Centella asiatica* extract alone and in combination with curcumin and/or piperine Boxplots of the metabolite biomarkers that changed 4 h after administration of *Centella asiatica* (CTS) in the positive mode of detection Boxplots of the metabolite biomarkers that changed 4 h after administration of *Centella asiatica* (CTS) in the negative mode of detection