
ThermoFisher SCIENTIFIC

New technology of GCMS

The world leader in serving science

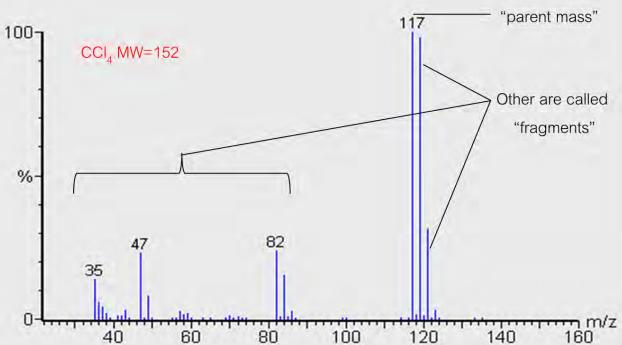
Basic of Gas chromatography

- Gas Chromatography (GC) : Chromatography technique which gas is used as mobile phase
- Sample will be injected into the system, Injection port where all components are vaporized and swept into the column
- Sample components will then be separated according to the interaction with stationary phase and eluted to detector.



Why GC/MS?

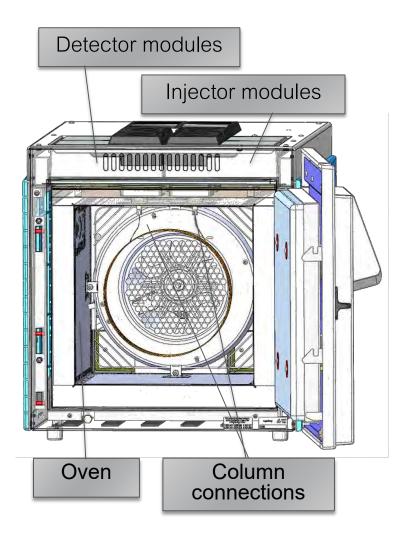
- Universal and specific
 - ✓ Full scan for unknown sample
 - ✓ SIM, MIM for specific (interested) mass
- High Sensitivity
 - ✓ ppt level
- Provides identification with standard or library spectrum
- Interference-free quantitation (SIM or MIM)
- Isotopic information
- Confirmation of other conventional detectors



- The production of ions that are subsequently separated or filtered according to their mass-tocharge (m/z) ratio and detected.
- The resulting mass spectrum is a plot of the (relative) abundance of the produced ions as a function of the m/z ratio."

Mass Spectrum

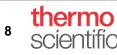
Trace1300 Series GC features to boost productivity and laboratory efficiency


- Capillary iConnect Injector Modules
- SSL, PTV, On-Column
- Integrated Backflush
- iConnect SSL and PTV injectors module with integrated BKF capabilities
- Large Volume Injection capablilities
- With PTV and SSL injector
- iConnect Helium Saver module
- Proprietary solution to save Helium consumption during operation
- iConnect Detector Modules
- FID, TCD, ECD, NPD, FPD, PDD
- Retention Time Alignment

thermo scientific

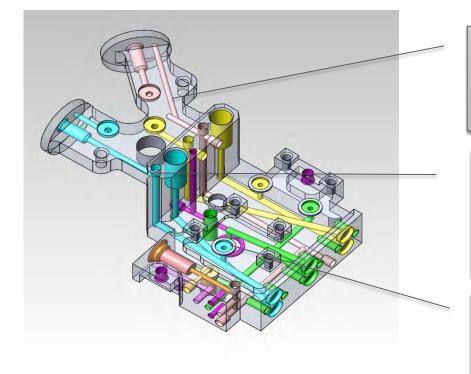
- Easy and quick approach to keep data consistency
- No-vent Module (for NOVPI MS systems)
- In GCMS operation, it allows to disconnect the column without venting the MS


- Inj/det modules fit on the oven top and enter the oven with column connection terminals
- Gas and electrical connections are provided on the top deck base
- User- exchangeable modules in two minutes:
 - Tailor configuration to applications
 - Upgrade systems to ensure productivity growth
 - Inlets: SSL; SSL with Backflush; PTV; PTV with Backflush
 - Detectors: FID; TCD; ECD; NPD



Modular GC: Main Design Challenges

- Miniaturization of components
 - ✓ Miniaturization of electronics board
 - ✓ Miniaturization of pneumatic circuits and components
- Temperature constrains
 - Housing modules with electronics on an oven running up to 450° C
 - Compact modules with electronics and with high temperature injector and detector bodies
- Ensuring reliable connections
 - ✓ Gas connections
 - Electrical connections

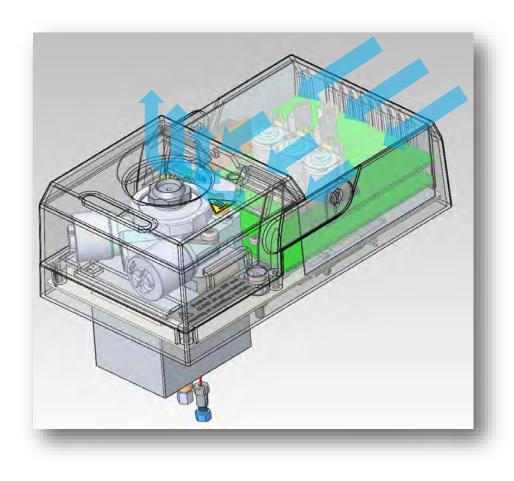


Miniaturized Injectors / Detectors Manifolds

- All pneumatic circuit is integrated in the manifold allowing miniaturization.
- No or minimum use of tubing or fittings minimizing risks of leaks.

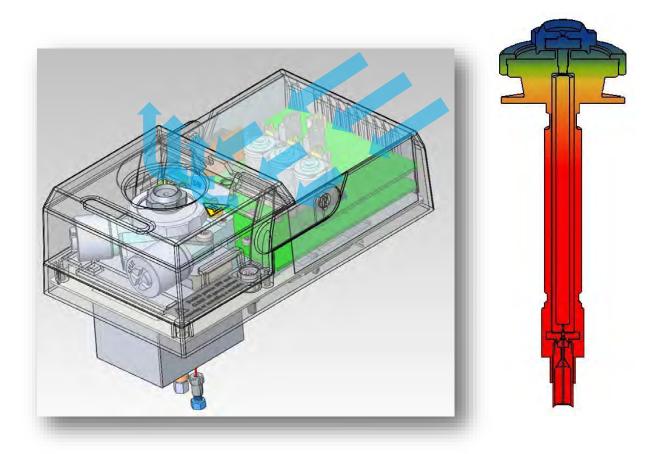
All gas channels are machined into the manifold

Flow restrictors are housed directly into the manifold. Manifold temperature is measured in real time and used for proper flow compensation


Seal to valve and sensor is made by high quality o-rings

SSL Injector Module Active Cooling

- Forced air enters the module from its back side and keep electronics cool
- Air is then vented through the injector box hole creating a barrier against the heat produced by the hot injector
- The air vent helps in keeping the septum head cool without affecting the internal inlet temperature profile
- Module base is cooled by the cold oven top deck copper plate
- Same air path is used for detectors



SSL Injector Module Active Cooling

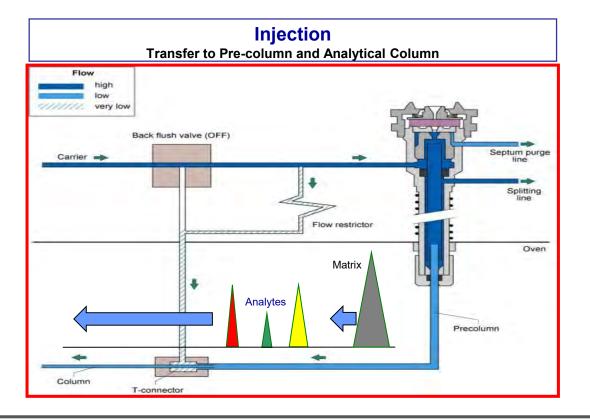
- Forced air enters the module from its back side and keep electronics cool
- Air is then vented through the injector box hole creating a barrier against the heat produced by the hot injector
- The air vent helps in keeping the septum head cool without affecting the internal inlet temperature profile
- Module base is cooled by the cold oven top deck copper plate
- Same air path is used for detectors

Backflush: built-in for iC-SSL and iC-PTV

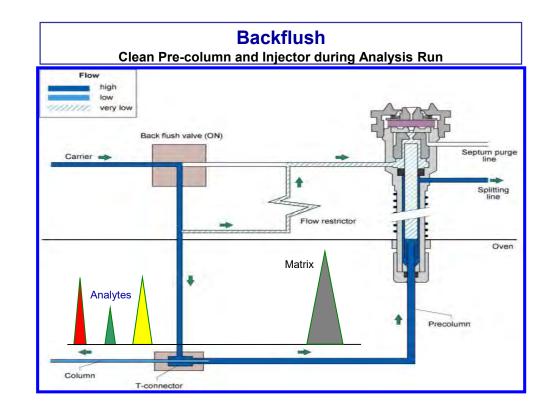
 Injector can operate as standard SSL and PTV or reversing the carrier gas flow direction in the inlet, venting from the split line possible "undesired" analytes.

• SSL/PTV BKF can be used as a standard inlets just capping the BKF line

- Back-flush option included in the module without additional plumbing
- Self adjusted carrier flow during backflush for easier operation and method set up
- No need for additional auxiliary gas for backflush operation

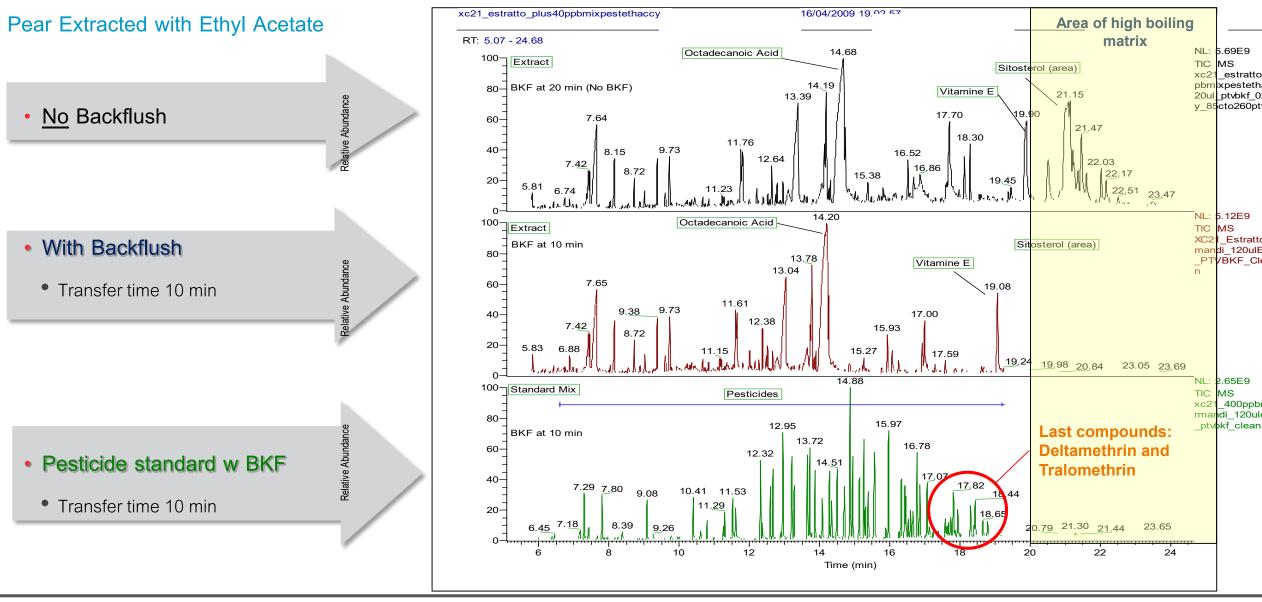

ThermoFisher SCIENTIFIC

Instant connect SSL and PTV injector with Backflush


The world leader in serving science

Backflush Option : Integrated Solution with PTV and SSL

- Instant connect SSL and PTV injector with backflush capabilities to shorten analysis time and keep the analytical column and the detector cleaner
- Entire pneumatic circuit is integrated in the injector module for a self adjusted carrier flow rate during BKF
- No tubing nor fittings are used, minimizing risks of leaks and method complexity
- Very useful for dirty samples (poor clean-up) (i.e. biological/food extracts)


14

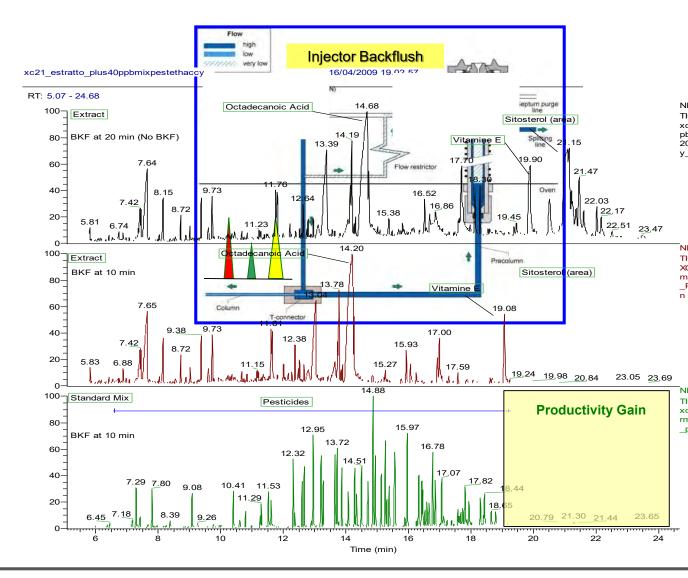
Shorten the analysis time and preserve from matrix contamination

Benefits - Injector Backflush Increases Productivity

Relative Abundance

Relative Abundance

Relative Abundance

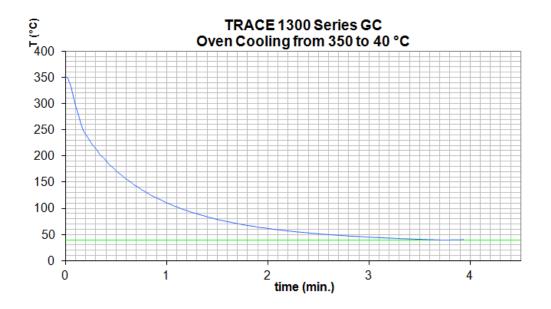

- Reduce sample prep procedure
 - for multi-component methods
 - e.g. QuEChERS for pesticides
- Use concurrent injector backflush
 - Keep high boiling matrix from the column
 - No need to backflush the whole column
 - Avoid additional clean time after the run
 - Clean the injector as well during the run
 - No need of additional Aux Gas Control
- Stop the run

thermo

SCIENTIFIC

16

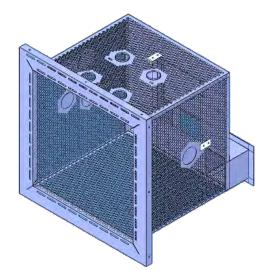
- After the last compound of interest
- Get to the next injection
- Increase sample throughput


TRACE 1300 series: "1000-holes" capabilities

• Quickly recover starting conditions after power off

Warm-up times. From OFF conditions to readiness (minutes)

	TRACE 1300 Series	Brand A
Oven at 50 °C INJ & DET at 250°C	3.5	10.2



- Fast Heating and cooling
- Quickly reaching starting temperature of

ambient +3°C

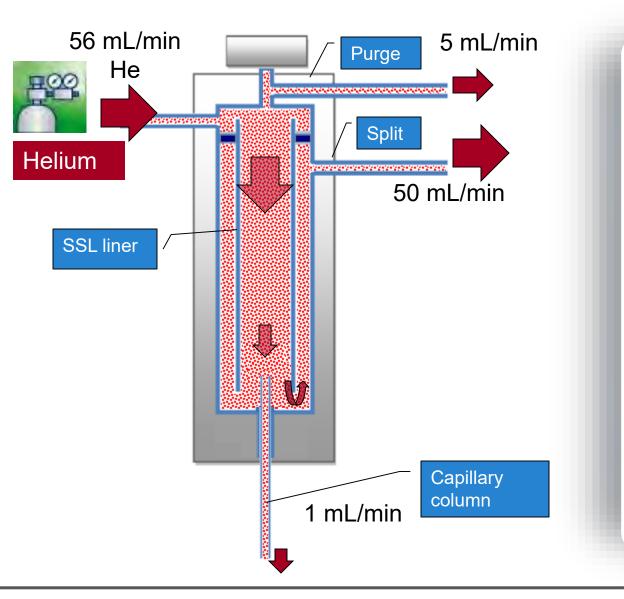
- Cooling from 450 to 50°C in < 4'
- Cooling from 350 to 40°C in < 3.5'

ThermoFisher SCIENTIFIC

Instant Connect Helium Saver

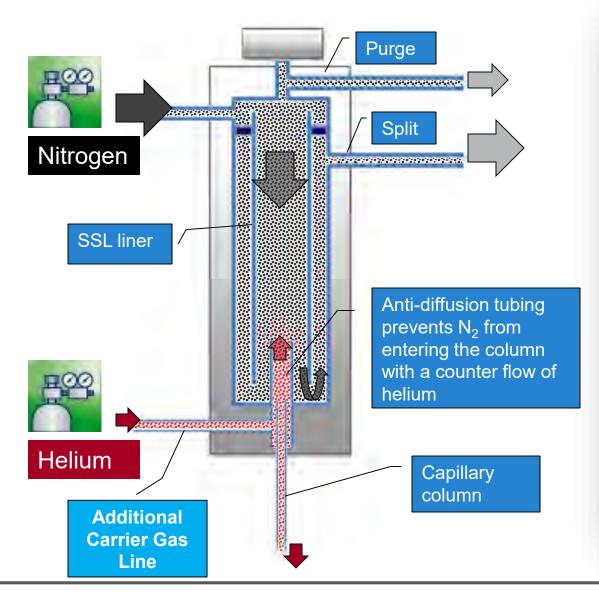
The world leader in serving science

Reducing Helium Consumption


- There are some practical advantages in reducing Helium consumption versus migrating to a different carrier gas
 - There is no need to revalidate methods
 - There are no safety concerns when using Helium in the GC oven
 - There are no concerns about possible negative impact on detector performance (e.g. MS)

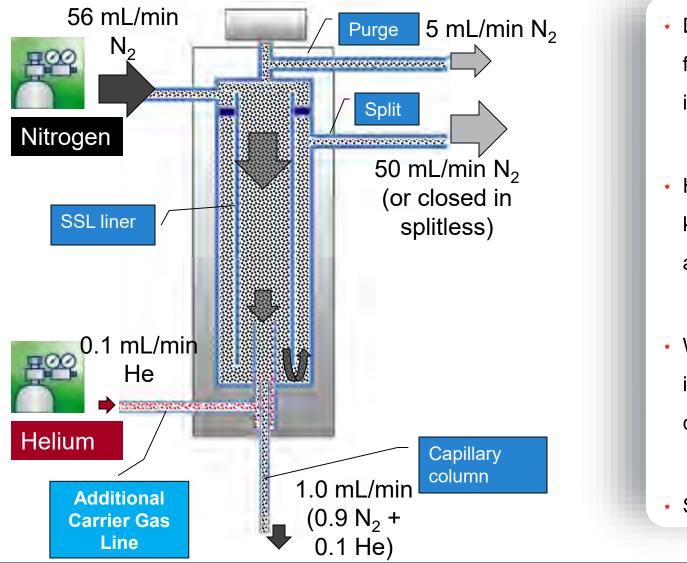
- The instant connect helium saver injector is using simultaneously two different gasses
 - Helium carrier gas is only used for separation process
 - A different gas is used to purge the inlet and split sample (e.g. Nitrogen)

Standard Split/Splitless Injector



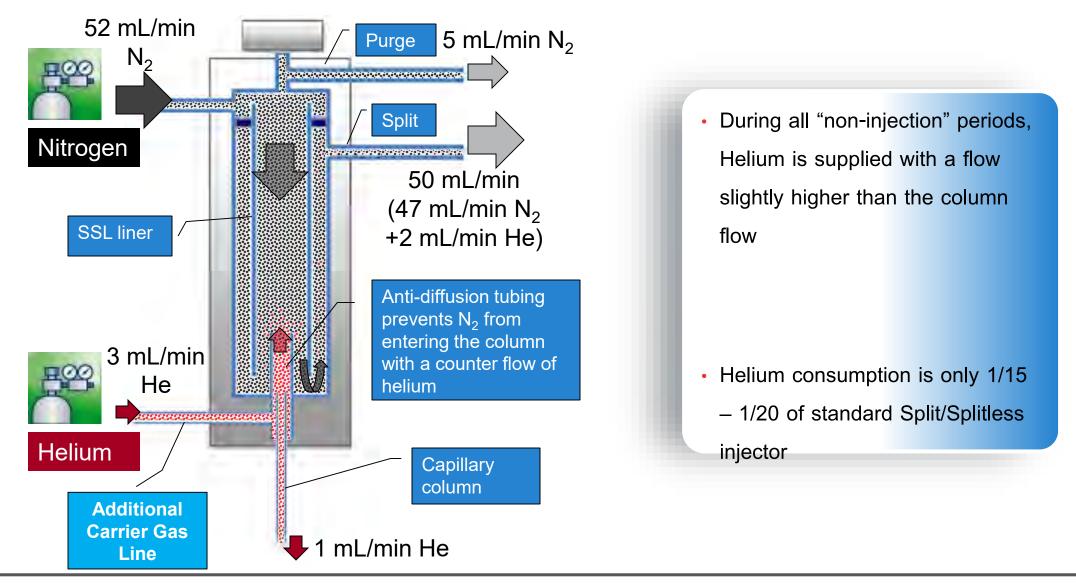
- SSL design almost unchanged since the introduction of capillary columns
- Same gas used for separation carrier, septum/inlet purge and sample splitting
- Typically only ~1/10 1/50 of the total flow enters the column
- Purge and split flows cannot be reduced beyond a certain limit without introducing contamination into column/detector:
 - Sample matrix accumulated in liner and lines
 - Septa particles
 - Air diffusing from septa
 - Seals outgassing

Instant Connect Helium Saver Module


Inlet supplied with 2 gases

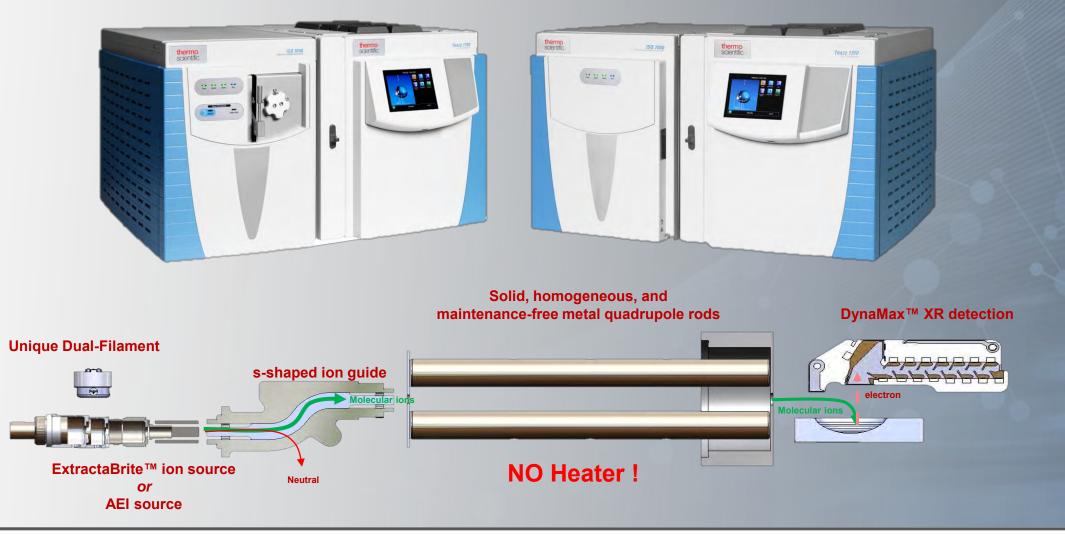
- Nitrogen column head pressure settings regulates Helium flow
- The additional Helium line doesn't need active regulation and gas can be supplied using calibrated restrictor

How the Helium Saver Module Works: Injection


- During injection period, nitrogen flows into the column for sample introduction
- Helium is supplied at 0.1 mL/min to keep the connection swept and avoid dead volumes effects
- When GC is in stand-by, can be left in this condition with zero consumption of helium

Separation uses helium

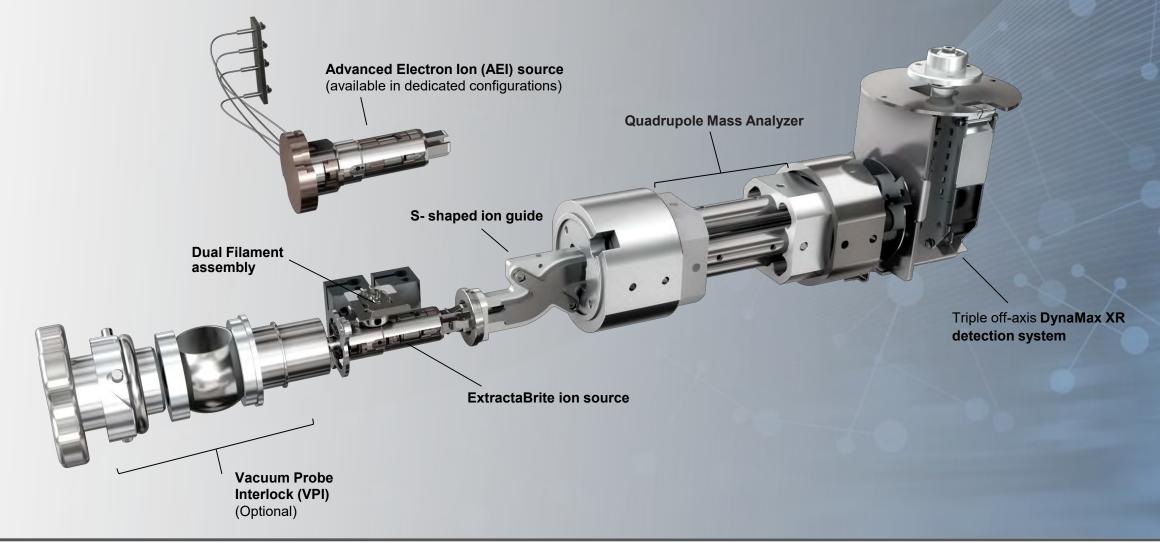
How the Helium Saver Module Works: Operation


ThermoFisher SCIENTIFIC

The unstoppable and Off-axis Mass Spectrometer

The world leader in serving science

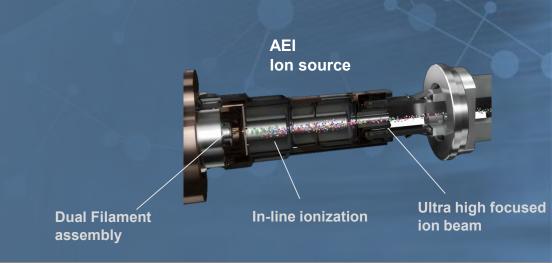
Mass Spec Components Same for All Product Offerings


New ISQ 7000 Single Quadrupole GC-MS

ISQ 7000 GCMS – Designed with Intention



Introducing Advanced Electron Ionization (AEI)


Inheriting from the ExtractaBrite[™] ion source

- Highly inert material
- Independent dual heater
- Proprietary RF lenses
- Dual filament design

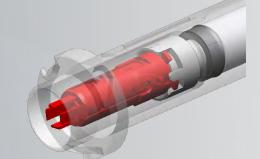
Adding innovative design for superior sensitivity and robustness

- Highly efficient ionization
- Tightly focused ion beam

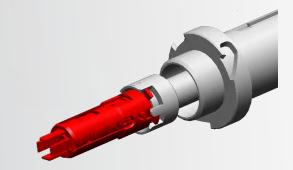
Extended uptime for enhanced laboratory efficiency

UNSTOPPABLE

What is NeverVent[™]



Extends the capability of the Vacuum Probe Interlock (VPI) design with the newly introduced source plug, V-Lock


Through the VPI, no need to vent mass spec system for extracting the wireless ExtractaBrite ion source

Step 1. Insert removal tool

Step 2. Remove source

Step 3. Hot source is held in tool

Step 4. Push source out of tool

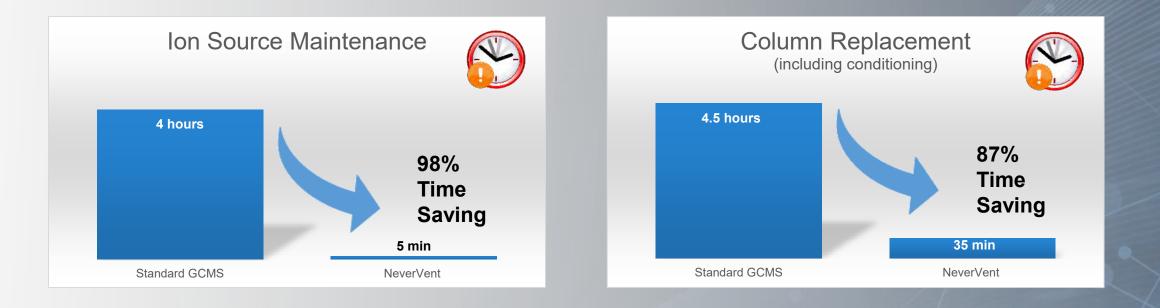
What is NeverVent[™]

No complicated fluidics

Extends the capability of the Vacuum Probe Interlock (VPI) design with the newly introduced source plug, V-Lock

Through the VPI and the V-Lock source plug, no need to vent mass spec system to change the analytical column

Through the VPI and the V-Lock source plug, no need to vent mass spec system to make injector maintenance


V-Lock

Isolate the MS under vacuum from the GC

or extra connections

Time saving by using the NeverVent technology

- NeverVent reduces downtime and maximize sample analysis
- Increases the lab efficiency by saving the time otherwise wasted in recovering MS operation
- Your time can be spent on producing quality results

Extended capability with the VPI

Direct Sample Probe - ideal for materials difficult to elute chromatographically

- Designed to eliminate sample preparation time
- Compatible with all modes of ionization and mass analysis
- Simplified use through the Vacuum Probe Interlock (VPI)


- Direct Insertion Probe (DIP) ideal for solid samples or trace components in solid matrices such as forensic samples, tissue, etc.
- Direct Exposure Probe (DEP) ideal for liquids or solids dissolved in a suitable solvent.

Advance Electron Ionization (AEI) source – extended robustness

- Highly focused ion beam makes this ion source extremely robust
- Maintenance frequency is significantly reduced even with difficult matrices
- Utmost sensitivity is now achieved with extended robustness, ideal for challenging samples

Unstoppable Ease of Use

Thermo Scientific[™] Chromeleon[™] CDS

- Control your entire chromatography lab. It is fully scalable from a single workstation to an enterprise-wide installation
- Control of more than 350 modules from Thermo Fisher Scientific[™] and many other vendors
- Quantitative mass spectrometry workflows for all separation techniques and MS variants, all using the same intuitive user interface.
- Boost laboratory efficiency with operational simplicity and intelligent functionality

GC & GCMS Product Portfolio

Thermo Scientific[™] TRACE[™] 1300 Series GC is part of our family of GC-MS solutions

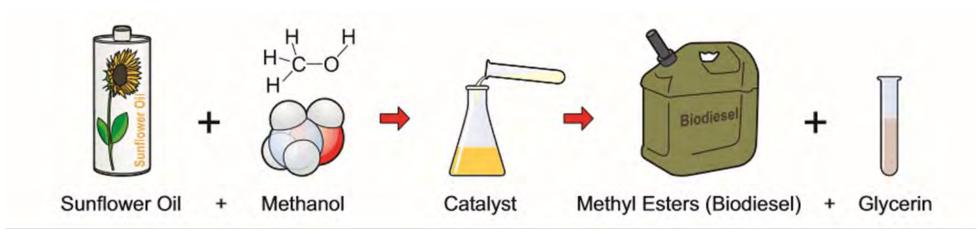
Thermo Scientific™ TRACE™ 1300 Series GC	Thermo Scientific™ ISQ™ Series MS	Thermo Scientific™ TSQ™ Series MS	Thermo Scientific™ Exactive™ GC-HRMS	Thermo Scientific™ Q Exactive™ GC-HRMS	Thermo Scientific™ DFS™ HRMS
Instant Connect Modular GC	Single Quadrupole MS	Triple Quadrupole MS	Hybrid Quadrupole-Orbitrap HRMS	Hybrid Quadrupole-Orbitrap HRMS	Magnetic Sector HRMS
Detection with Multiple Detectors	Confirmation by Mass Spectrum or SIM	High speed and high capacity MS/MS and SRM	High Resolution and Accurate Mass Full Scan MS	High Resolution and Accurate Mass Full Scan & MS/MS	High-Resolution Full Scan and SIM

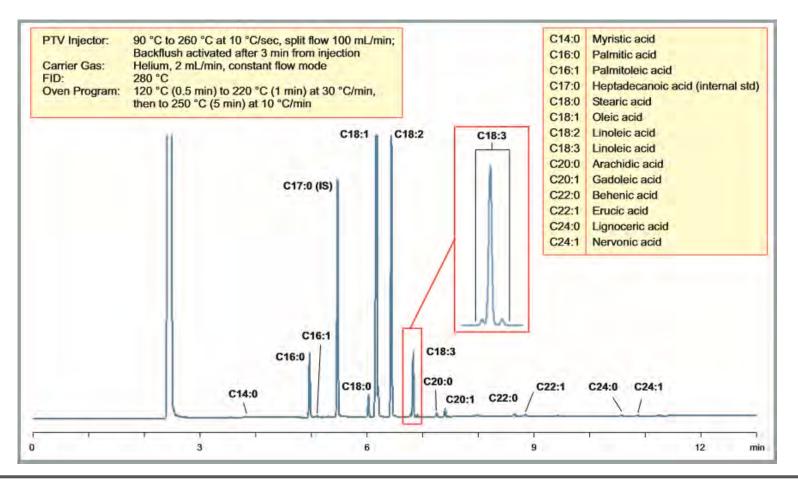
The <u>best</u> solutions at every level of specificity

ThermoFisher SCIENTIFIC

Application on GCMSMS

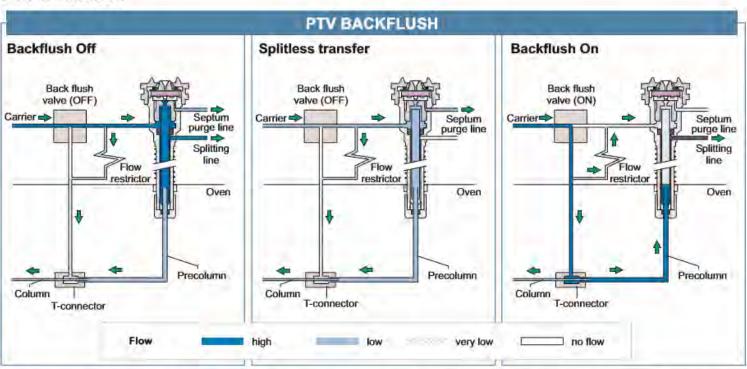
The world leader in serving science


GC and GCMS application support.



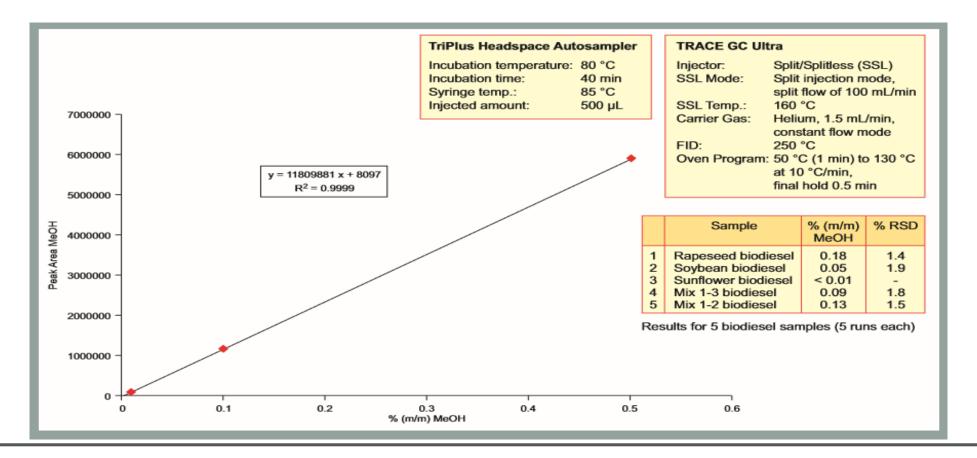
- Total FAME and Linolenic Acid Methyl Ester : EN 14103
 - Free and Total glycerin : ASTM D6584 / EN 14150
 - Methanol Content : EN 14110

The cetane namber of biodiesel depends on the distribution of fatty acids in the original oil. Thus a reliable characterization of FAME is essential for a more accurate calculation of the cetane index. EN 14103 is a standard method for determination of esters and linolenic acid methyl ester and can be applied to biodiesel analysis. EN 14103 requires GC analysis.



Total FAME and Linolenic Acid Methyl Ester : EN 14103

By incorporating the backflush option into the PTV injector, heavy compounds can be vented out of the inlet system, effectively preventing column contamination while still allowing efficient transfer of compounds of interest.


PTV Backflush

PTV Backflush (reverse flow device): the glycerides fraction is vented out without entering the column.

Methanol in B100 is a matter of safety since even small amounts of this material can reduce the flash point of the biodiesel. Moreover, residual methanol can affect fuel pumps, seals and elastomers and can result in poor combustion properties. EN 14110 requires a headspace GC method, based on either polar or non-polar columns, and is applicable for a concentration range from 0.01% m/m to 0.5% m/m of methanol (MeOH).

Multi-Residue Pesticide Analysis in Herbal Products Using Accelerated Solvent Extraction with a Triple Quadrupole GC-MS/MS System

Multi-Residue Pesticide Analysis in Herbal Products Using Accelerated Solvent Extraction with a Triple Quadrupole GC-MS/MS System

Sample Preparation

Dried leaves , fruits or seeds and other herbal products

Weight 10 g of sample.

Mixed with DE and load into the extraction cells.

Concentrated Sample and injection with GC

ASE™ 350

Sample weight	10 g
Extraction solvent	Ethylacetate/cyclo-Hexane 1:1, same as GPC solvent
Temperature	120 °C
Pressure	100 bar
Extraction time	5 min, 1 cycle
Flushing with solvent	60% of cell volume
Flushing with nitrogen	100 s

Multi-Residue Pesticide Analysis in Herbal Products Using Accelerated Solvent Extraction with a Triple Quadrupole GC-MS/MS System

GC : Condition

Injector PTV Base temperature Transfer	Splitless mode 50 °C 10 °C/s to 250 °C, until end of run
Flow	Constant flow, 1.2 mL/min, helium
Analytical column	40 m, ID 0.18 mm, 0.18 µm film, 5%-phenyl phase (5MS type)
Pre-column	5 m, ID 0.18 mm, empty deactivated, no backflush
Column oven	Temperature programmed
Start 70 °C, for 1.50 min	
Ramp 1	15 °C/min to 190 °C
Ramp 2	7 °C/min to 290 °C, 12 min
ransfer line 250 °C	

MS/MS : Condition

Ion source temperature	220 °C		
MRM Detection	Timed SRM mode (see Appendix)		

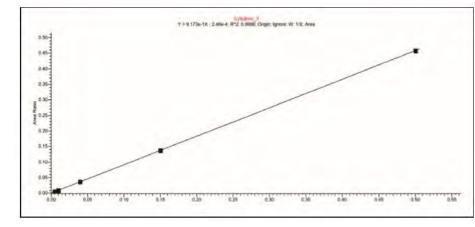


SRM : More than 80 compound

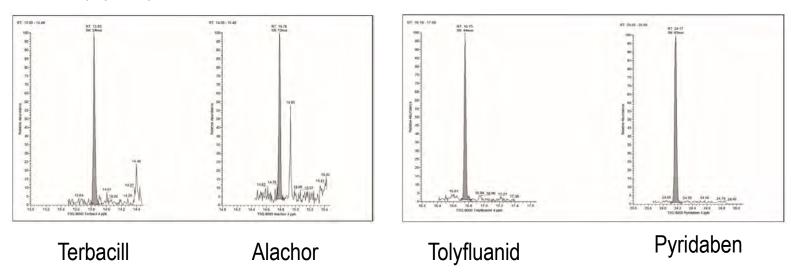
Pesticido	RT (min)	Pressure or Minute (sector	Product Mines (mid)	Colinion Energy (V)	Pezticide Name	RT (min)	Precursor Mass (m/z)	Product Mass (m/z)	ł
Namn	(1110)	Minure (cello	Mines (mu)	Enorgy (V)	Dimethipin	13.53	210.10	76.02	
Diffuorobenzamid Degradation (Isocyanat)	6.93	152.93	90.01	20	Terbutylazin	12,97	214.10	132.06	
Diffuorobenzamid					Terbutylazin	12.97	214.10	104.05	
Degradation (Isocyanat)	6.93	152.93	125.01	20	Propyzamid	13.04	173,01	145.01	
Carbofuran 1	8.80	149.06	121.05	10	Propyzamid	13.04	173.01	109.01	
Carboluran 1	8.80	164.08	149.07	10	Propyzamid	13.04	175.02	147.01	
Difluorobenzamid	8.62	141.00	63.11	25	Propyzamid	13.04	254.02	226.02	
Degradation				1.130	Isocarbamide	13.67	142.03	70:01	
Difluorobenzamid Degradation	8.62	141.00	113.09	15	Isocarbamide	13.67	142.03	113.01	
Biphenyl-d10_ISTD	9.24	160.00	160.16	10	Dinoseb	13.92	211.13	116.99	
Biphenyl	9.28	154.08	153.08	15	Dinoseb	13.92	211,13	163.11	
Biphenyl	9.28	153.08	152.08	15	Terbazil	13.42	161.05	88.03	
Carbofuran-3-hydroxy 1	10.43	137.05	81.01	18	Terbazil	13.42	160.05	76,02	
Carbofuran-3-hydroxy 1	10.43	180.05	137.01	15	Bromocyten	14.37	358,79	242.85	
Tetrahydrophthalimid	10.84	151,04	79.01	-25	Bromocylen	14.37	356,93	241.24	
Tetrahydrophthalimid	10.84	151.04	122.09	10	Dimethenamid	14.60	230,06	154.04	
0-Phenylphenol	11.00	170.07	141.06	20	Dimethenamid	14.60	232,06	154.04	-
0-Phonyiphenol	11.00	170.07	115.05	.20	Dimethachlor	14.61	197.08	148.06	
Molinate	11.10	187.10	126.07	10	Dimethachlor	14.61	199.08	148.06	-
Molinate	11.10	126.07	98.05	5	Acetochlor	14.65	174.11	146.15	-
Chlorfenprop methyl	11.59	196.00	165.00	10	Acetochlor	14.65	223.19	147.17	-
Chlorfenprop methyl	11.59	165,00	137.00	10	Desmetryn	14.68	213.11	171.08	-
Fenobucarb	11.20	121.07	77.05	15	Desmetryn	14.68	213.11	198.10	-
Fenobucarb	11.20	150.09	121.07	10	Flurprimidol	14.77	269.12	106.98	-
					riarplinnuoi	-19.77	208/12	100,30	-
Propachlor	11.76	176.06	120.04	10	Alachior	14.26	188.10	160.07	
Propachlor	11.76	120.04	92.03	10	Atachlor	14,26	188,10	130.12	
Propachior	11.76	169,06	120.04	10	Alachior	14.26	237,14	160.15	
Propachlor	11.76	196.07	120.04	10	Metribuzin	14.14	198.08	82.03	
Cycloate	11.98	154.10	83.05	10	Metribuzin	14.14	198.08	89.04	
Cycloate	11.98	215.13	154.10	6	Propanil	15,00	217.01	161.00	Г
Diphenylamin	11.49	169.01	168.09	20	Propanil	15.00	219,01	163.00	T
Diphenylamin	11.49	169,01	167.09	20	Fipronildesulfinyl	14.15	333.00	231.20	T
Chloropropham	12.26	213.06	127.03	15	Fipronildesulfinyl	14.15	333.00	281.30	t
Chloropropham	12.26	213.06	171.04	10	Carbofuran-3-hydroxy 2	15.02	137.05	81.01	t
Phosmet-oxon	12.09	160,00	132.96	15	Carbofuran-3-hydroxy 2	15.02	180.05	137.01	t
Phosmet-oxon	12.09	104.00	75.88	10	Prometryn	14.49	241.14	184.10	t
Phosmet-oxon	12.09	160.00	76.96	20	Prometryn	14.49	226.13	184.10	t
Prometan	13.10	225.16	183,13	10	Tridiphan	15.18	186,94	158.94	t
Prometon	13.10	225.16	210.15	10	Tridiphan	15.18	219.09	184.09	t
Carbofuran 2	13,13	149,06	121.05	10	Ethofumesat	14.80	206.82	160.86	+
Carbofuran 2	13,13	164.08	149.07	10	Ethofumesat	14.80	285.75	206.82	+
Profluralin	13,22	318.10	199.06	15	Pentanochlor	15.73	141.05	106.05	+
Profluralin	13.22	330.23	252.45	.25					+
Swep	13.46	187.05	123.95	18	Pentanochlor	15.73	239.05	141.05	+
Swep	13.46	219.11	174,02	15	Chlorpyrifos	15.78	257.97	165.98	+
Trietazine	13.48	229.14	200.14	15	Chlorpyrifos	15.78	314,05	258.18	+
Trietazine	13,48	214.14	186.10	15	Bromacil	15:03	205.01	188.01	1
Dimethipin	13.53	117.98	57.97	10	Bromacil	15.03	207.01	190.01	

Collision Enargy (V)	Pesticide Name	RT (min)	Procursor Mass (m/z)	Product Mass (m/z)	Collisio Energy (
10	Anthrachinon	15.44	207.97	151.99	20
10	Anthrachinon	15.44	180.04	152.05	15
10	Anthrachinon	15.44	207.97	180.10	10
15	Nithrothal isopropyl	16.09	236.08	194.07	10
18	Nithrothal isopropyl	16.09	236.08	148.05	20
15	Triadimefon	15.41	208.07	181.06	10
15	Triadimeton	15,41	210.07	183.06	10
15	Tiocarbazil	16.15	156.08	100.05	8
10	Tiocarbazil	16.15	279.10	156.07	6
15	Tetraconazol	15.39	336.02	218.01	20
10	Tetraconazol	15.39	338.02	220.01	20
15	Butralin	15.54	266.14	220.11	15
15	Butralin	15.54	266.14	190.10	15
15	Dicapthon	15.44	262.00	262.00	9
15	Dicapthon	15.44	262.00	216.00	13
10	Crufomat	16.30	256.20	226.15	25
10	Crufomat	16.30	276.20	182.09	10
10	Allethrin	16.17	123.07	80.98	10
15	Allethrin	16.17	136.04	92.98	10
10	Dinobuton	16.89	163.06	116.04	15
10	Dinobuton	16.89	211.07	117.04	18
10	Penconazol	16.89	248.06	157.04	25
20	Penconazol	16.89	248.06	192.04	15
10	Pyrifenox 1	16.17	262.03	192.02	20
25	Pyrifenox 1	16.17	262.03	200.02	20
10	Pyrifenox 2	16.81	262.03	192.02	20
20	Pyrifenox 2	16.81	262.03	200.02	20
16	- Juneare	1 10101	1	Loolor	
10.	Famophos (Famphur)	20.16	218.07	108.94	15
10	Famophos (Famphur)	20.16	218.07	126.95	20
20	Iprodion Degradation	18.63	186.87	123.99	20
20	Iprodion Degradation	18.63	186.87	159.02	15
18	Iprodion Degradation	18.63	243.94	187.02	10
15	Iprodion	20.57	.314.06	245.25	15
15	Iprodion	20.57	186.99	123.87	20.
12	Iprodion	20.57	316.00	247.35	15
15	Iprodion	20.57	316.00	273.11	10
20	Propiconazol 1	19.38	259.02	173.02	20
10	Propiconazol 1	19.38	172.94	144.91	15
12	Propiconazol 2	19.54	259.02	173.02	20
15	Propiconazol 2	19.54	172.94	144.91	15
15	Pyraflufen-ethyl	20.30	412.02	349.02	15
20	Pyraflufen-ethyl	20.30	349.02	307.02	15
15	Clodinafop-propargyl	20.36	349.05	266.04	15
15	Clodinafop-propargyl	20.36	349.05	238.04	15
15	Lenacil	20.70	153.05	136.06	15

Pesticide Name	RT	Precursor Mass (m/z)	Product Mass (m/z)	Collision Energy (V)
Paclobutrazole	17.75	238.11	127.06	15
Chinomethionat	17.78	206.06	147.98	15
Chinomethionat	17.78	234.08	206.06	10
Napropamid	18.07	271.16	128.07	5
Napropamid	18.07	128.07	72.04	10
Flutriafol	18.11	219.07	123.04	15
Flutriafol	18.11	123.04	75.03	15
Flurodifen	18.14	190.02	126.01	10
Fluroditen	18.14	190.02	146.01	5
Bisphenol A	18.17	213.14	119.06	15
Bisphenol A	18.17	213,14	164,99	20
Bisphenol A	18.17	228.15	213.07	10
Chlorfenson_ISTD	18.20	302.00	110.90	20
Hexaconazol	18.22	214.08	159.07	20
Hexaconazol	18.22	214.08	151.98	25
Imazalii	18.24	172.96	144.96	15
Imazalil	18,24	172.96	108.95	25
Isoprothiolan	18.24	203.99	117.95	7
Isoprothiolan	18.24	203.99	84.90	25
Isoprothiolan	18.24	290.06	118.03	15
Flamprop-methyl	18.39	230.05	170.04	10
Flamprop-methyl	18,39	276.06	105.02	10
Kresoximmethyl	18.48	206.10	131.09	15
Kresoximmethyl	18.48	206.10	116.01	10
Buprotezin	18,51	175,08	116,96	20
Buprofezin	18.51	175.08	131.99	15
Buprofezin	18.51	249.16	105.93	20
Pasticida Name	RT (tean)	Presuman Mass (m/z)	Product Mass (m/d)	Collision Energy (V
Azinphosmethyl	22.95	160.00	132.00	10
Azinphosmethyl	22.95	160,00	104.64	10
Pyriproxylen	23.06	136.00	77.92	20
Fenamirol	23.55	251.02	139.01	15
Fenamirol	23.55	330.03	139.01	10
Pyridaben	24.50	364.14	309.12	5
B	24.00	1 200 10	447.00	10



0000


Calibration and Detection limit.

Calibration level : 0.004 µg/mL to 1.0 µg/mL(This range represents an analyte concentration of 0.01 to 2.5 mg/kg in the samples)

Pesticide	RT [min]	S/N @ 4 ppb
Terbacil	13:83	24
Alachlor	14:78	12
Tolylfluanid	16:75	44
Pyridaben	24:17	83

Sensitivity (LOD)

Sample Result.....

Sample Matrix	Pesticide Residues Found	Concentration (mg/kg)	
Dried Herbs	o-Phenylphenol	0.017	
Dried Herbs	Tebuconazol	0.023	
Dried Fruit	Diflubenzuron	0.049	
Dried Fruit	Myclobutanil	0.023	
Dried Fruit	Propargit	0.479	
Dried Fruit	Tebuconazol	0.081	
Dried Fruit	Difenconazol	0.013	
Dried Herbs	Picoxystrobin	0.228	
Dried Herbs	Picoxystrobin	0.233	
Dried Herbs	o-Phenylphenol	0.011	
Herbal Tea	o-Phenylphenol	0.014	
Herbal Tea	o-Phenylphenol	0.011	
Herbal Tea	Terbutylazin	0.016	

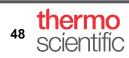
Multi-Residue Pesticide Analysis in Herbal Products Using Accelerated Solvent Extraction with a Triple Quadrupole GC-MS/MS System

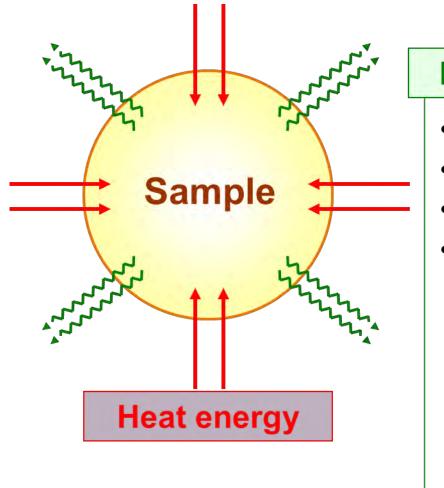
Hans-Joachim Haabschmann, Joachim Gammorsbach, Thomio Fehrer Schridte, Deidert, Germany Nicase Hassbort, Johann Riehmer, Himm Hälter, Phyloibi Grabh I & Co ND, Vederbergegendh, Germany

Key Words Posticides, Tea, Herbel products, ASE, SRM, MRM, Multi-residue analysis, TSQ 8000 GC MS/MS

Introduction The robust names of particular lists developed in second or same yheaden day adjournal conducting to the decision of same yheaden day adjournal contamination composited. A million mildre method for furthel products and uses in materials, the mildre adjournal contamination of the data and the same second second second second second adjournal methods and the same second second second protections transmissions on table facto leads plane protections transmissions on the factor load plane protections transmissions on the factor load plane protections transmissions on the factor load plane protections that the same second sec

A rotative screening multicol for more than 200 pesticide componeds was applied to a wide variety of different sample types, conjugit provi register black tas or sage larenes, to seads this terms and hardword. The data processing and reporting was addword by using the Dateness Scattalie: Traditide quantification ordeness total



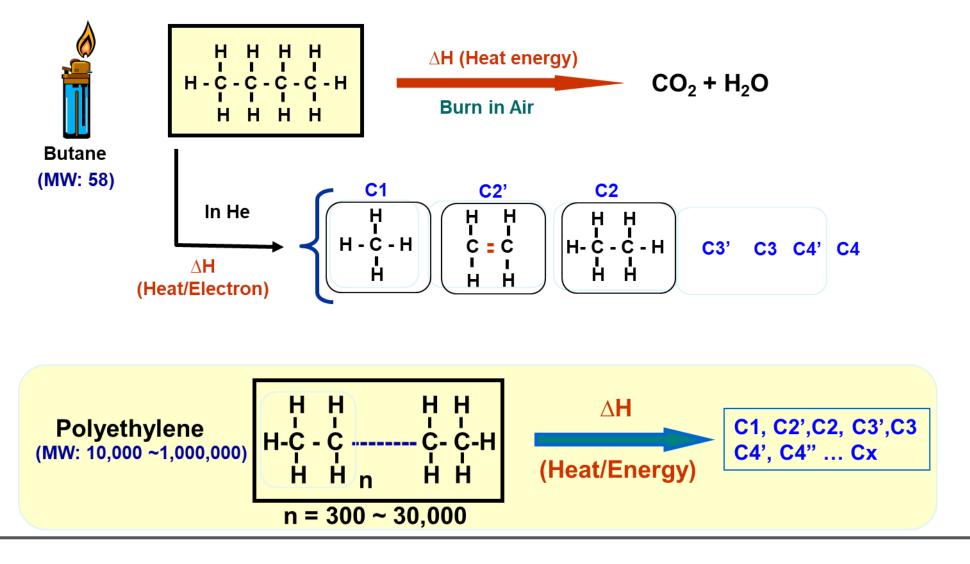


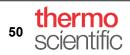
Information from polymeric Materials by Heating

Information

- Weight loss: TGA
- Enthalpy change: DTA, DSC
- Mechanical change: TMA, Dilatometry
- Evolved gas

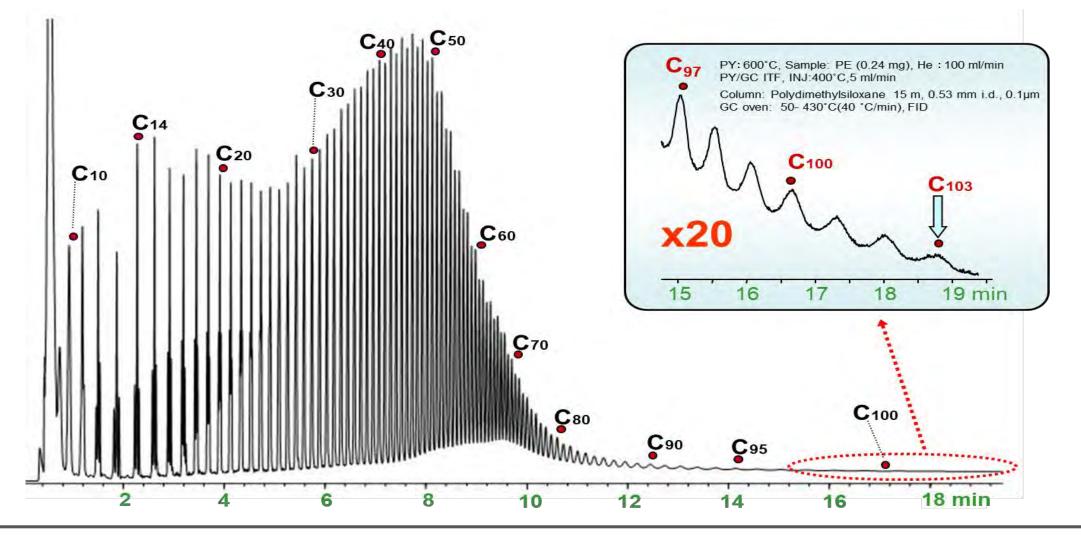
```
volume: EGA (volume of gas) qualification & quantification:
```

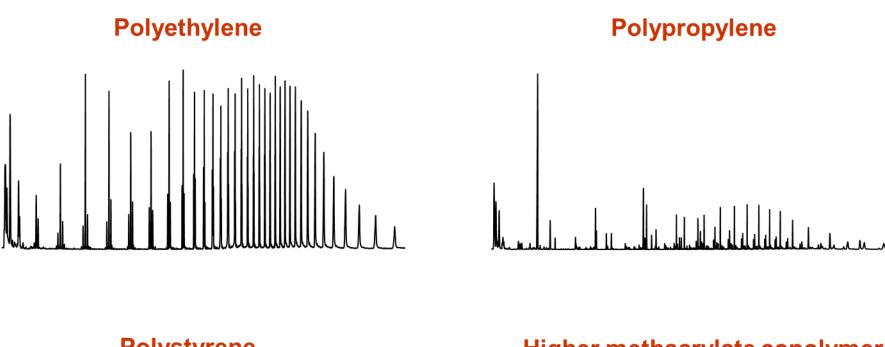

Py-GC/MS TD-GC/MS UV/Py-GC/MS EGA/MS Py/MS

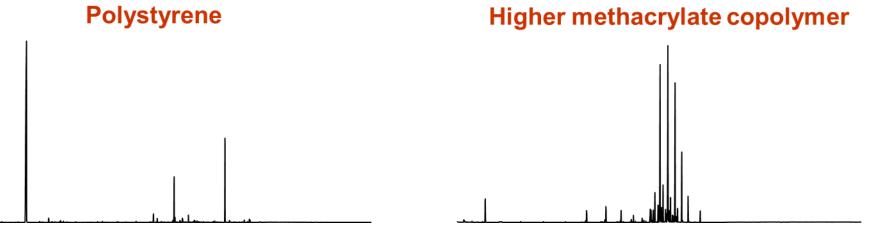


Pyrolyzer

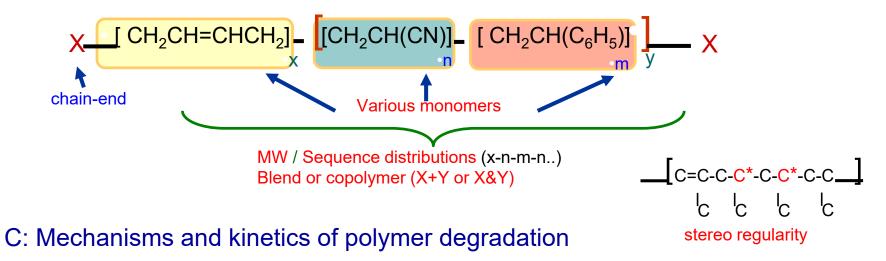
Pyrolysis of Polymeric materials and pyrolyzates






Pyrolyzer

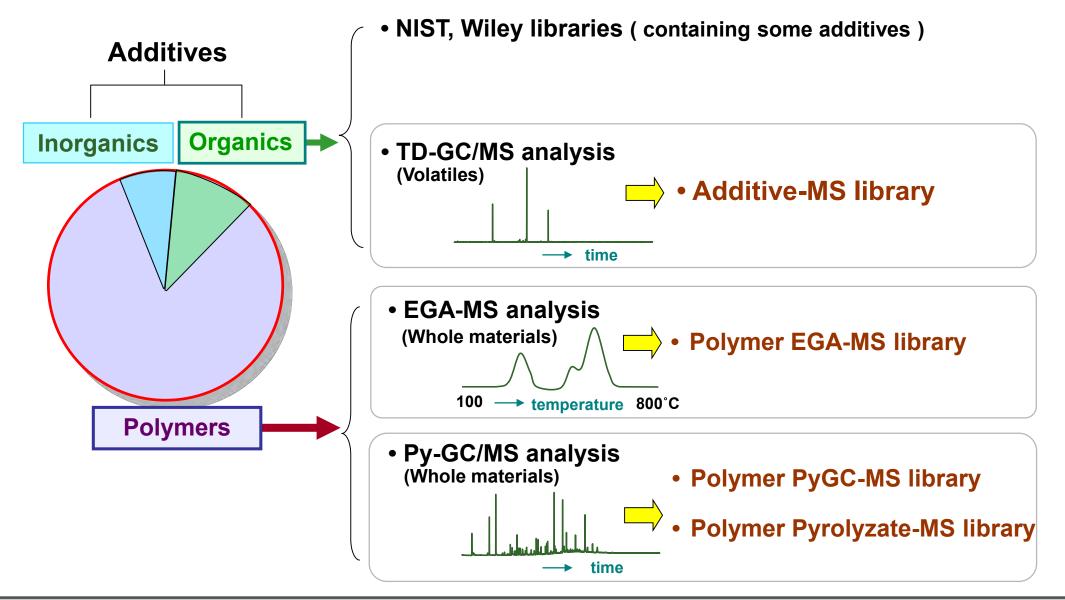
Typical pyrogram of polyethylene at 600°C



Characterization of Polymers by PY-GC/MS

A: Identification of polymeric materials

Unknown materials (PP/ PVC/ SBR?)

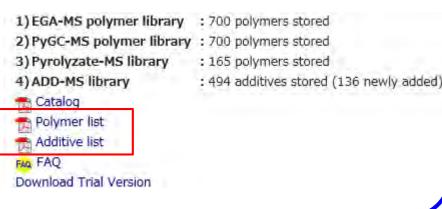

B: Structural characterization of polymers

D: Qualitative and quantitative analysis of additives

Classification of 700 polymers in the libraries

- 1) Vinyl ploymers with ethylene unit
- 2) Polyolefines
- 3) Vinyl polymers with styrene unit
- 4) Vinyl polymers with styrene derivative unit
- 5) Acrylic polymers
- 6) Chlorine containing vinyl polymers
- 7) Fluorine containing vinyl polymers
- 8) Polyvinyl alcohols and its ester polymers
- 9) Diene elastomers

- 10) Polyamide
- 11) Polyacetals and polyethers
- 12) Thermosetting resines
- 13) Engineering plastics of polyimide and aramide type
- 14) Engineering plastics of polyester type
- 15) Other engineering plastics with phenylene backbone
- 16) Silicone polymers
- 17) Cellulose polymers
- 18) Polyurethanes
- 19) Others


Classification of 494 additives in the library

1) Antioxidant

- 2) Ultraviolet absorber,
- Light stabilizer
- 3) Metal deactivator
- 4) Stabilizer
- 5) Lubricant
- 6) Plasticizer
- 7) Antistatic additive
- 8) Anti-clouding agents
- 9) Fire retardant
- 10)Blowing agent
- 11)Conductive agent
- 12)Nucleating agent

13) Optical characteristic controlling agent
14) Antibacterial, Antifungal agent
15) Resin modifier
16) Vulcanization accelerator
17) Antidegradant

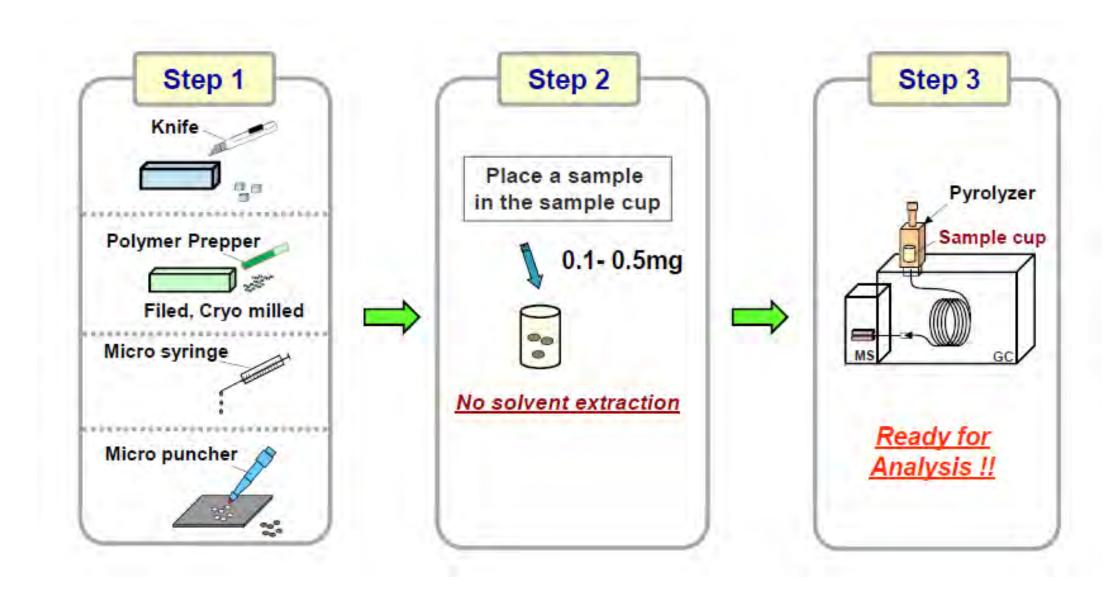
download the complete list from http://www.frontier-lab.com/english/ multi-functional-pyrolysis-system/

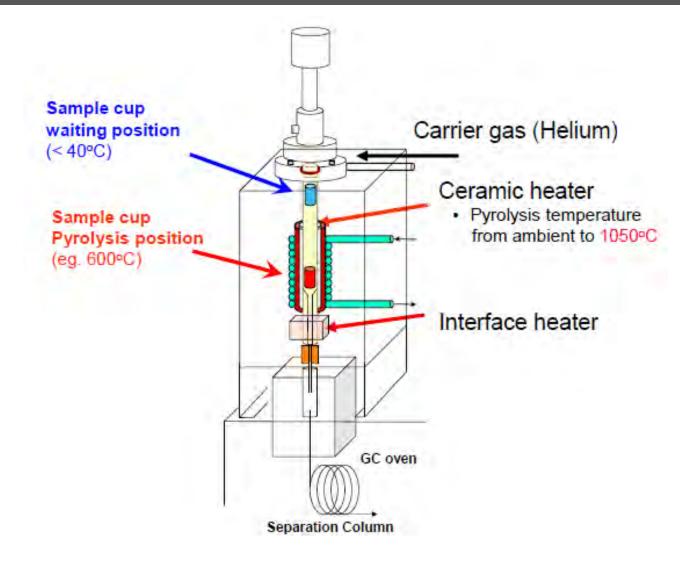


5

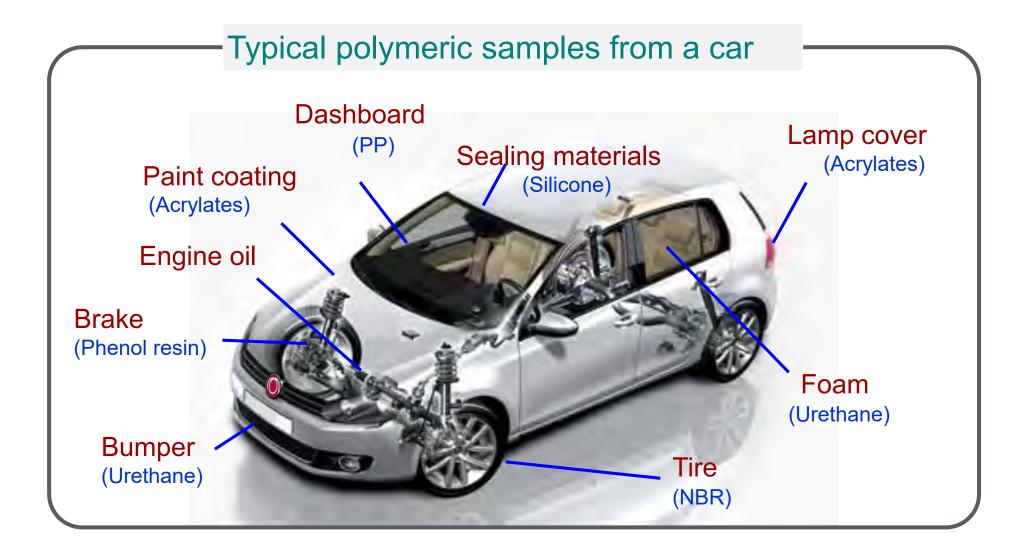
ตัวอย่างการวิเคราะห์ด้วย PY-GCMS

- สภาวะเครื่อง GCMS
- Injector
 - Temperature 300 °C
 - Split 200:1
 - Carrier gas flow 1.0 ml/min
- Oven
 - Initial 70 °C hold 1min ramp 1 ; 10
 °C/min to 320 °C hold 8 min.
- MS
 - Temperature 250 °C
 - Scan 35-550 amu.


- สภาวะเครื่อง Pyrolyzer
- Single-Shot Analysis
- Furnace Temperature 600 °C
- Interface Temperature 300 °C


Sample preparation

Schematic diagram of Multi-Shot pyrolyzer EGA/PY-3030D

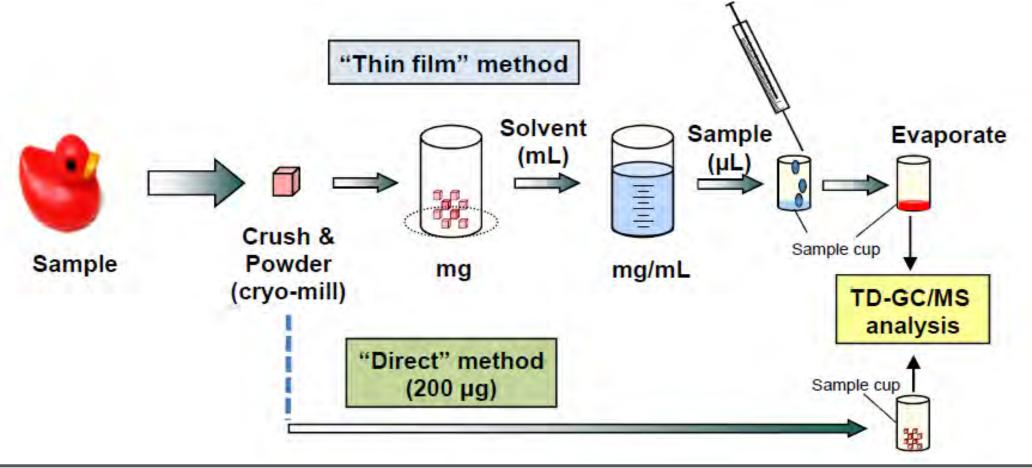

Auto-Shot Sampler

- 48 samples
- Extremely Reliable

Excellent Reproducibility

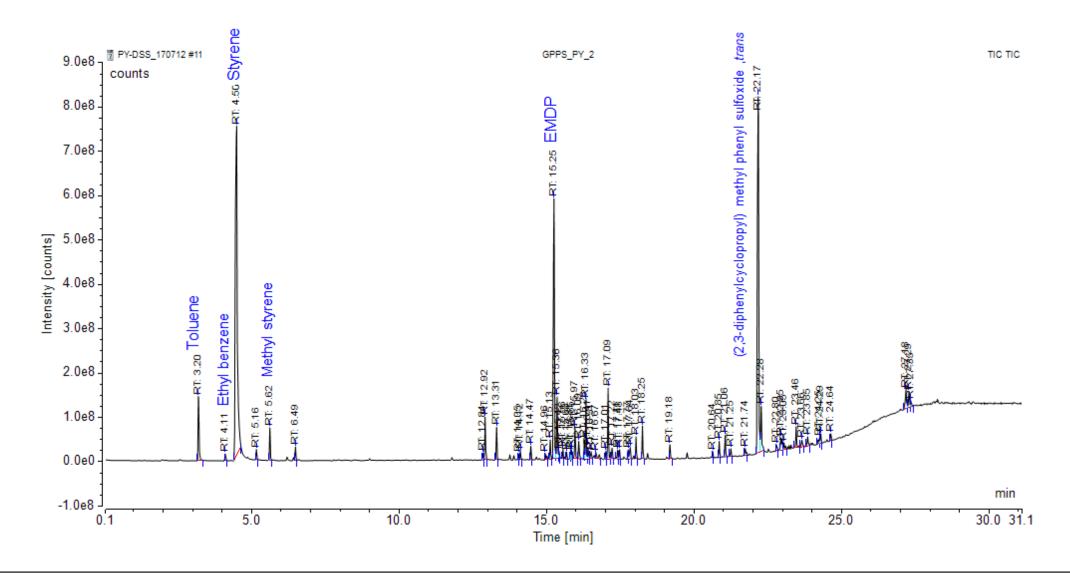
6

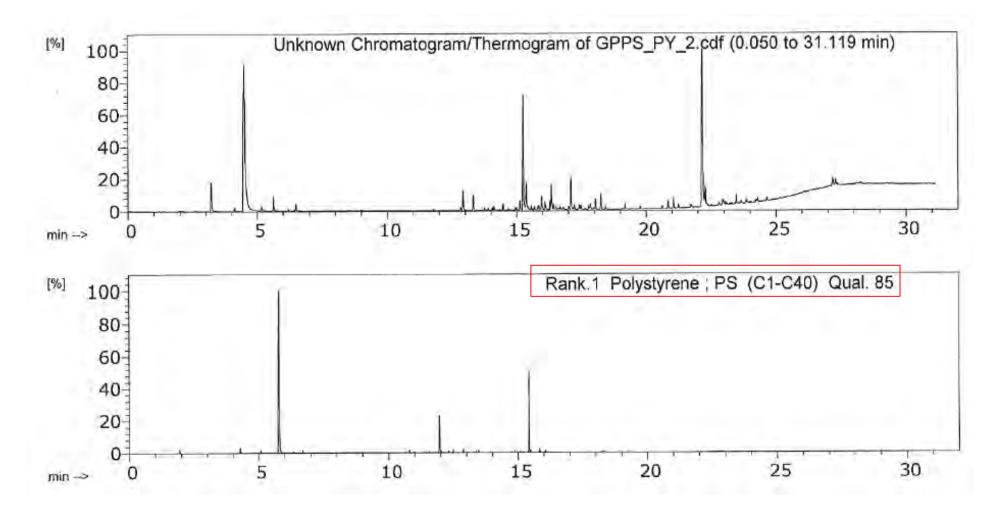
- Thermal Desorption GC/MS has become an official method approved by IEC for the analysis of restricted phthalates in electrotechnical products Phthalates are widely used as plasticizers in manufacturing plastic products. With regard to additives in plastics used in electrical and electronic equipment, the maximum concentration of the restricted phthalates is limited to 1000 ppm by the RoHS directive.
- In March 2017, the thermal desorption GC/MS using a pyrolyzer was adopted as the official method and approved by IEC (International Electrotechnical Commission) for the analysis of certain phthalates in electrotechnical products regulated by the RoHS directive (IEC 62321-8:2017).
- The thermal desorption GC/MS method using Frontier Lab products complies with the IEC method.

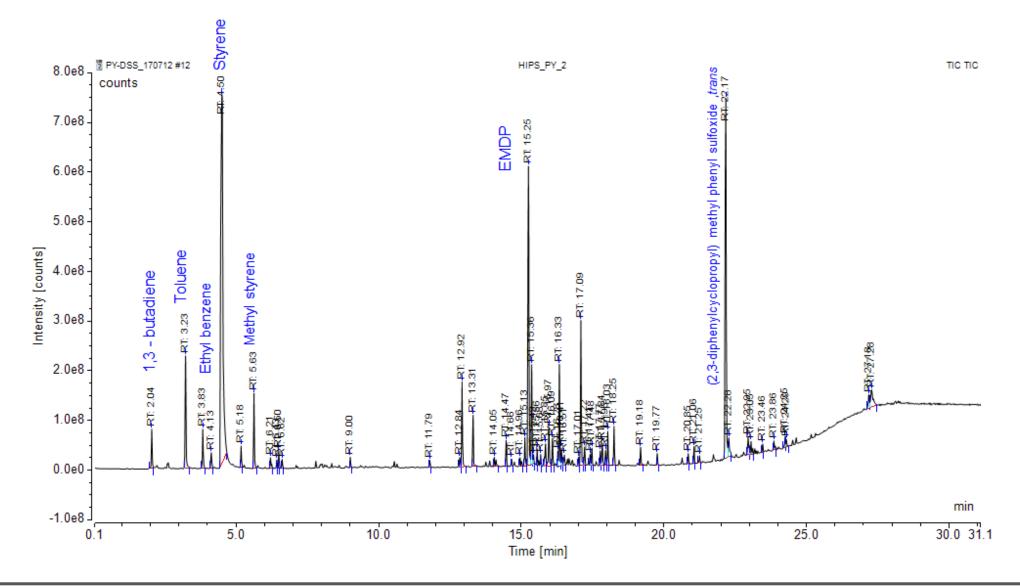


A discussion of the central factors that influence data quality when using ASTM D7823 for the determination of phthalates in polymeric substrates.

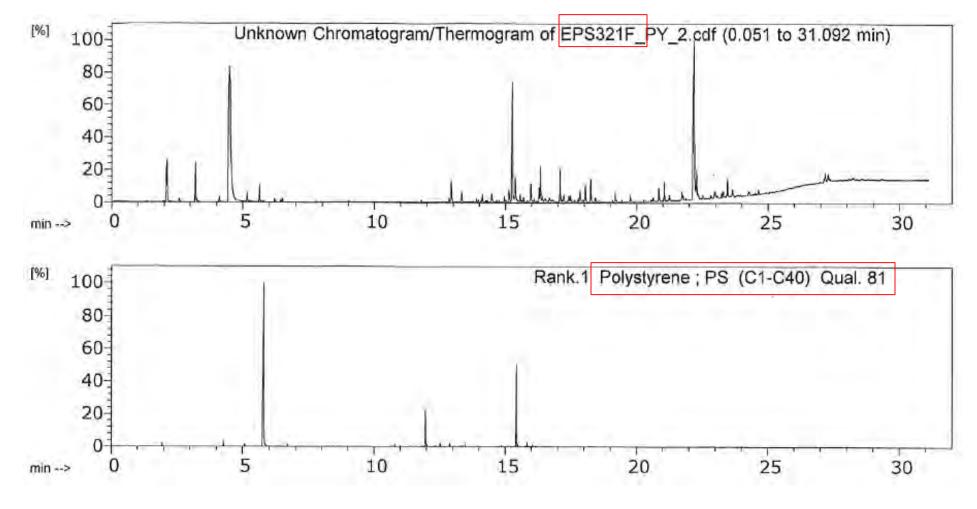
Thin Film method provides better quantitative results and sensitivity (due to more sample and homogeneity)

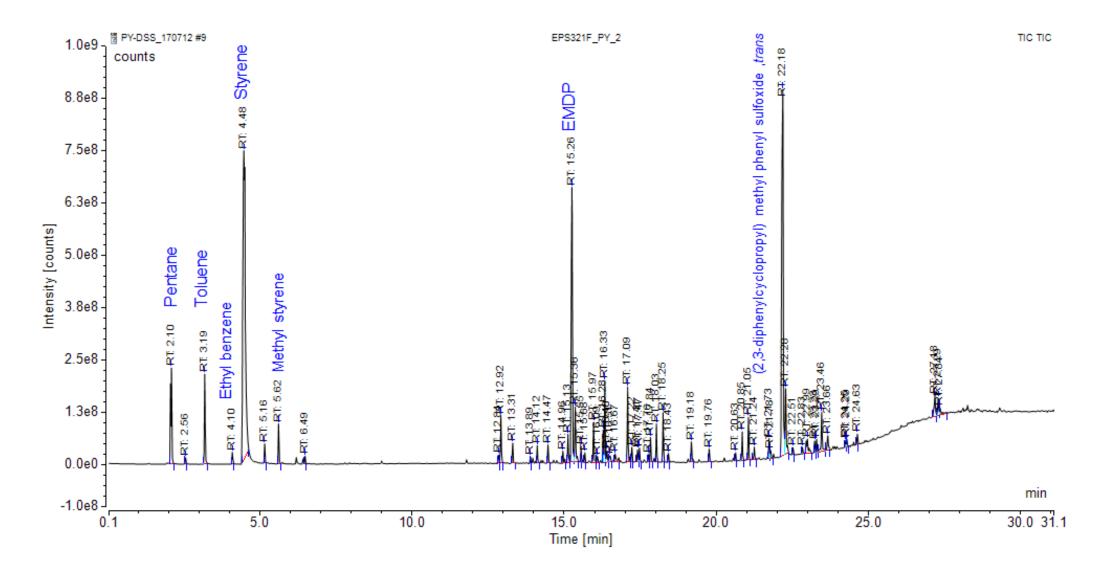

D.Randle, R.Freeman, A Hosaka and C. Watanabe Frontier Laboratories Ltd.




Rank.2 : Styrene-butadiene copolymer ABA block, 85% styrene (C1-C40) Qual. 85

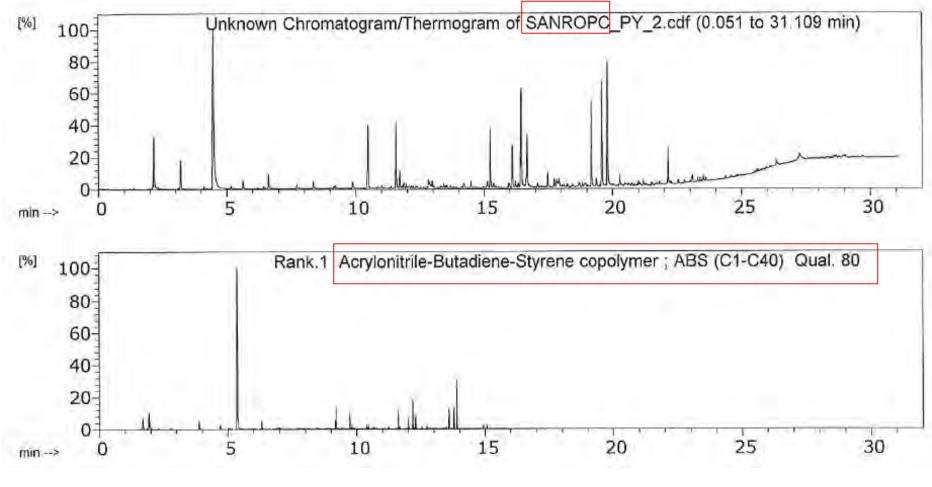
Rank.3 : Acrylonitrile-Butadiene-Styrene copolymer ; ABS (C1-C40) Qual.84

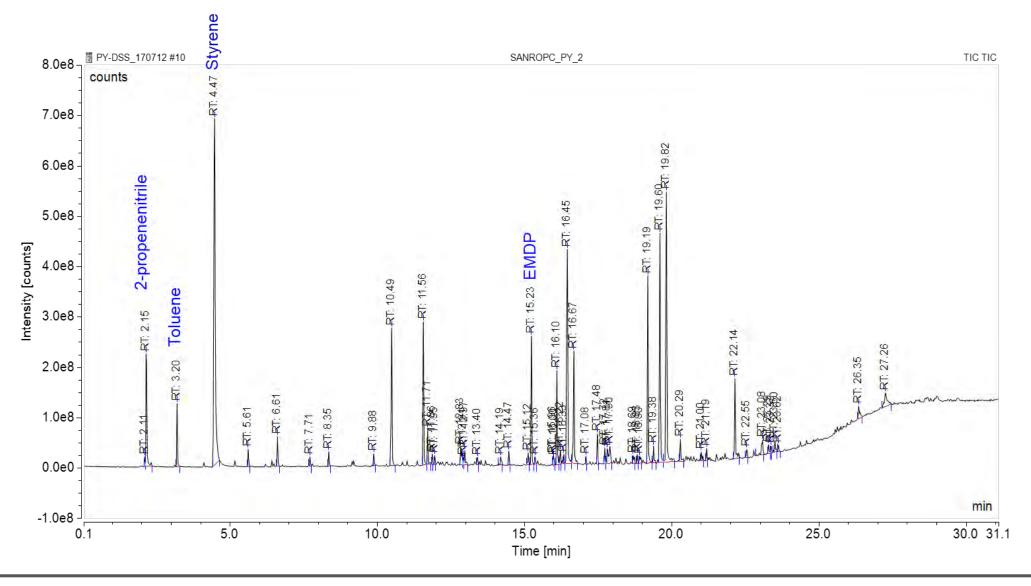




Rank.2 : Acrylonitrile-Butadiene-Styrene copolymer ; ABS (C1-C40) Qual.81

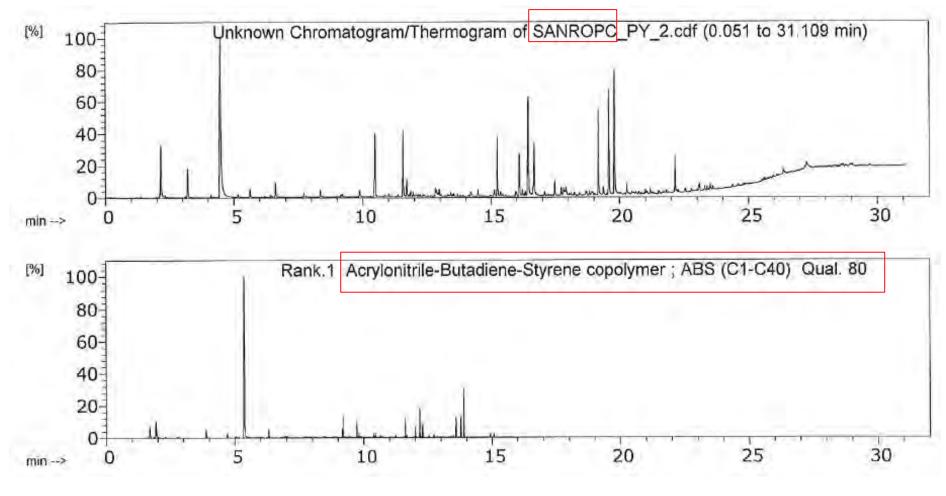
Rank.3 : Styrene-butadiene copolymer ABA block, 85% styrene (C1-C40) Qual. 81





Rank.2 : Acrylonitrile-Butadiene-Styrene copolymer ; ABS (C1-C40) Qual.79

Rank.3 : Acrylonitrile styrene copolymer ; AS (C1-C40) Qual.76



Rank.2 : Acrylonitrile-Butadiene-Styrene copolymer ; ABS (C1-C40) Qual.79 Rank.3 : Acrylonitrile styrene copolymer ; AS (C1-C40) Qual.76

- 1: Characterization of polymers
- 2: Quality control

- 3: Degradation/life evaluation of polymeric materials
- 4: Recycling of polymeric materials, biomass utilization

5: Organic geochemistry and soil chemistry

6: Clinical science, pathology

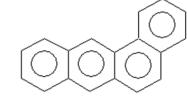
7: Biochemistry, microbiology

- 8: Coal liquefaction, energy conservation
- 9: Forensic science
- 10: Wood science, pulp industry

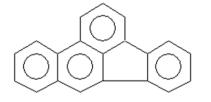
- 11: Tobacco smoke, toxicology
- 12: Extraterrestrial science

ThermoFisher SCIENTIFIC

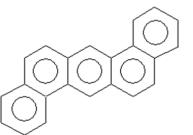
Analysis PAHs in extender oils

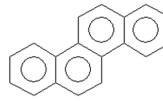

- EU standard specifies a procedure for determination of benzo(a)pyrene and sum of the eight individual polyaromatic hydrocarbons in extender oils. *listed in Table1*
- Sample Preparation Method : BS EN 16143:2013

Name of PAH	Abbreviation	CAS Registry number
Benzo(a)pyrene	BaP	50-32-8
Benzo(e)pyrene	BeP	192-97-2
Benzo(a)anthracene	BaA	56-55-3
Chrysene	CHR	218-01-9
Benzo(b)fluoranthene	BbFA	205-99-2
Benzo(j)fluoranthene	BjFA	205-82-3
Benzo(k)fluoranthene	BkFA	207-08-9
Dibenzo(a,h)anthracene	DBahA	53-70-3

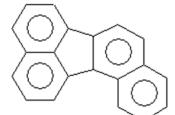

Table 1- List of individual PAHs in extender oils

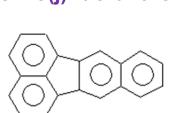
PAHs... Consists of 8 natives of PAHs MW range 228-278 amu (16PAHs could be up to 300+)

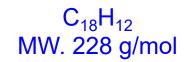

Benzo(a)anthracene


Benzo(b)fluoranthene

Benzo(a)pyrene

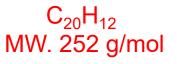

Benzo(e)pyrene

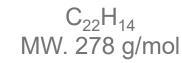

Dibenzo(a,h)anthracene


Chrysene

Benzo(j)fluoranthene

Benzo(k)fluoranthene




thermo

scientific

74

C₂₀H₁₂ MW. 252 g/mol

(1) Prepares sample solution

Weight Sample 70 ± 0.1 mg into Vol. flask 5 ml

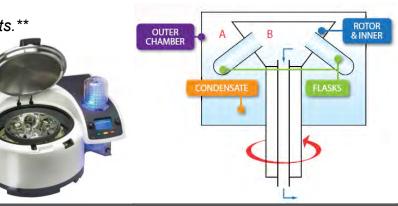
Dissolve with 2 ml of n-Pentane and Spike internal Std. (deuterated IS)

(2) Deactivates silica

Deactivate Silica gel by stirring with 7% (m/m) of water for 24 h.

(3) 1st sample extraction (8 Hours)

- 3.1 Mix deactivated silica (in 2) 5 g with n-Pentane
- 3.2 Load silica gel into chromatographic column (16 cm. L X 1 cm. ID)*
- 3.3 Flush silica gel with 10 ml n-Pentane through the column (discard)
- 3.4 Load sample (1) into column (before n-Pentane vanish form silica gel surface).
- 3.5 Rinse sample container with 2 ml n-Pentane. (not critical) and pour into column.
- 3.6 Elute sample by Cyclohexane 75 ml (several portion) and collect the eluents.**
- 3.7 Evaporate eluent (3.6) under 35 C till final volume 1ml.


*extended lenth of column to 25 cm. convenient for sample loading

** pressurized with N2 (1 bar est.) for faster elution

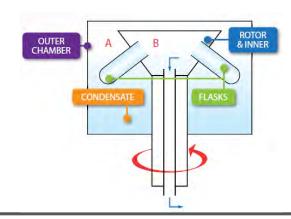
Pack column

Extracting


Sample Preparation Process

(4) Sample clean up (Sephadex LH20) (6 hours)

- 4.1 Mix 5 g. of Sephadex with IPA .. leave for overnight.
- 4.2 Load Sephadex into chromatographic column (12 cm L X 2.3 cm ID)
- 4.3 Add 1 ml IPA into (3.7) and load into column.
- 4.4 Rinse sample vessel with IPA (1 ml) and load into column.
- 4.5 Elute with IPA at 1 ml/min, Discard the first 24 ml eluent.
- 4.6 Collect eluent portion (@24-70 ml) in drying vessel
- 4.7 Evaporate eluent (4.6) under 35 C till nearly dry.
- 4.8 Add 2 ml Acetone and evaporate till dry.
- 4.9 Dissolve with CycloC6 and transfer into 1 ml Vol.Flask
- 4.10 Add injection standard (DE)* 0.2 ml and make up volume to 1 ml with CycloC6
- 4.11 Make up volume to 1 ml wth Cyclohexane.
- 4.12 Analyze with GCMSMS.



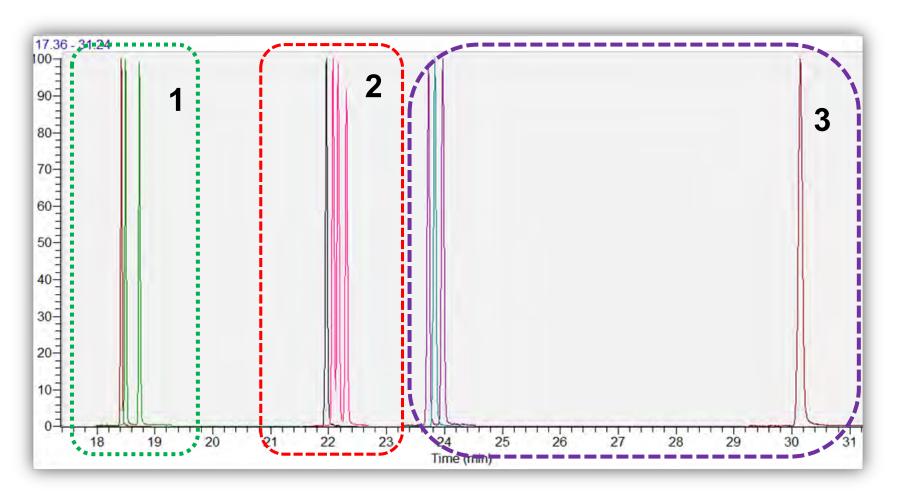
Fraction collecting

Dissolved Solution

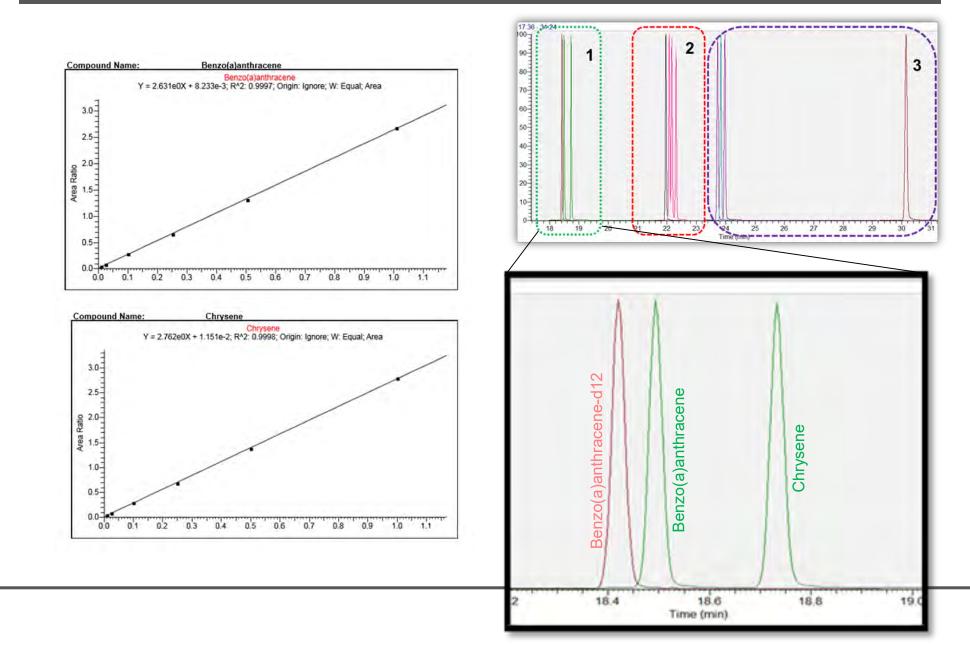
GC parameters

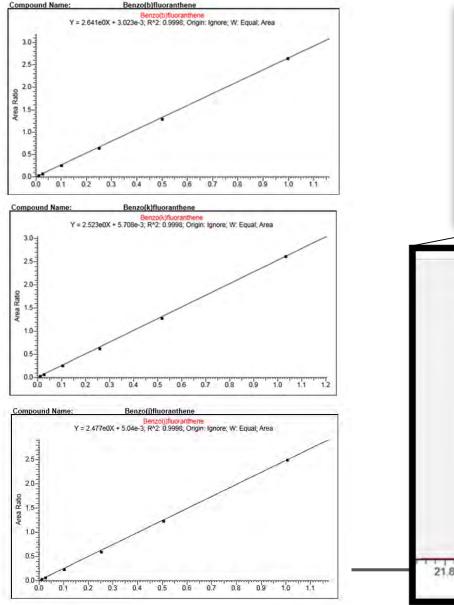
Parameter	Value
GC-column	60 m x 0.25 mm ID x 0.25 µm
Stationary phase	17% phenyl-methylpolysiloxane
Temperature program	Initial 90 °C hold 1min 20°C /min to 250 °C 4°C /min to 330 °C hold 10 min
Injection	PTV, Splitless
Injection temperature	275 °C
Injection Volume	1 µL
Carrier gas	He UHP grade 1.2 ml/min

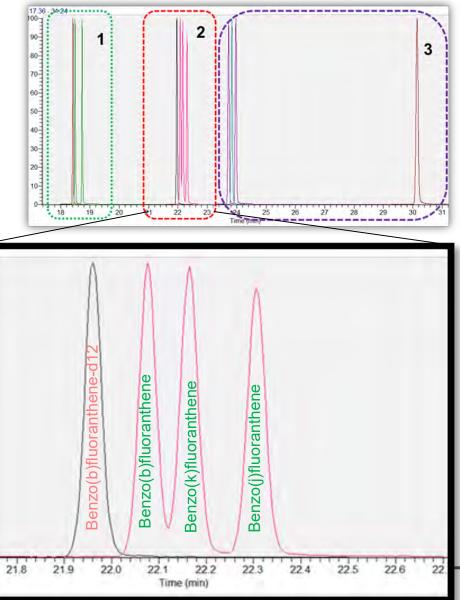
- Mass Spectrometer : EI Temp 250 C/ TL Temp 330/
- **MSMS –** SRM Q1 resolution 0.7 FWHM, Q3 Resolution 0.7 FWHM


Component	RT	mass	product mass	Collision energy	
Decfluorodiphynly	5.84	333.9	233.9	35	
		333.9	264.9	25	
Benzo(a)antracene-D12	18.46	240.1	212.1	25	
		240.1	236	30	
Benzo(a)antracene	18.53	228.1	202	25	
		228.1	226	30	
Chrysene	18.77	228.1	202	25	
-		228.1	226	30	
Benzo(b)Fluoranthene-D12	22.02	264.1	236	30	
		264.1	260	35	
Benzo(b)fluoranthene	22.13	252.1	226	25	
		252.1	250	30	
Benzo(k)fluoranthene	22.22	252.1	226.1	25	
		252.1	250	35	
Benzo(j)fluoranthene	22.36	252.1	226	25	
		252.1	250	30	
Benzo(e)pyrene	23.78	252.1	226.1	30	
		251.1	250	30	
Benzo(a)pyrene-D12	23.89	264.2	236.1	30	
		264.2	260	35	
Benzo(a)pyrene	24.03	252.1	226.1	35	
		251.1	250	30	
Dibenzo(a,h)anthracene	30.23	278.1	276	35	
		278.1	276.2	50	

8 PAHs Standard

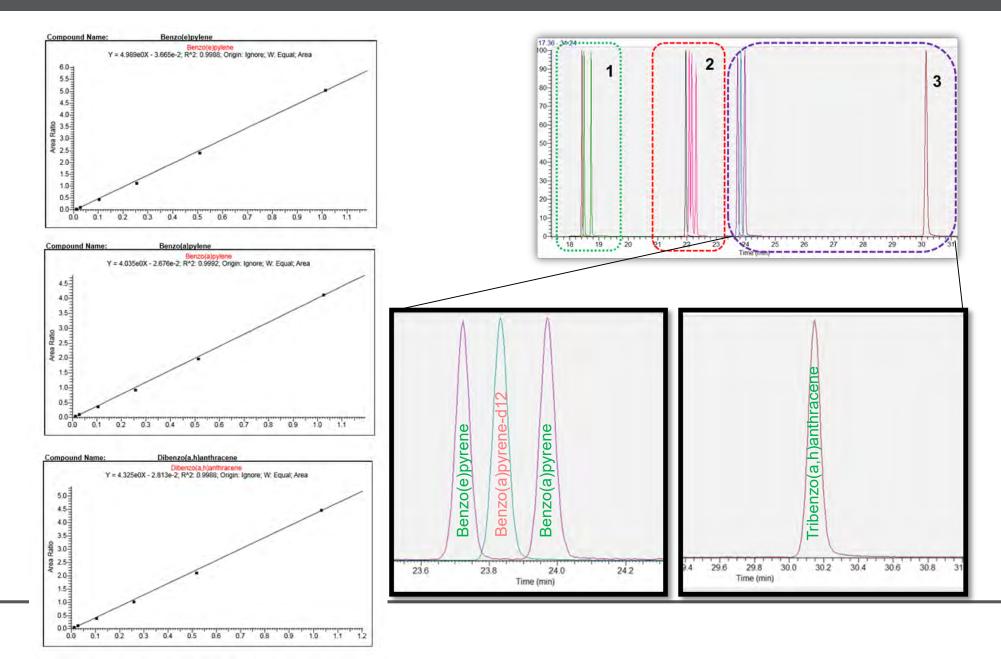

TIC


Chromatogram (1) – Standard 8 PAHs with 3 IS(d12)



Dec

Chromatogram (2) – Standard 8 PAHs with 3 IS(d12)



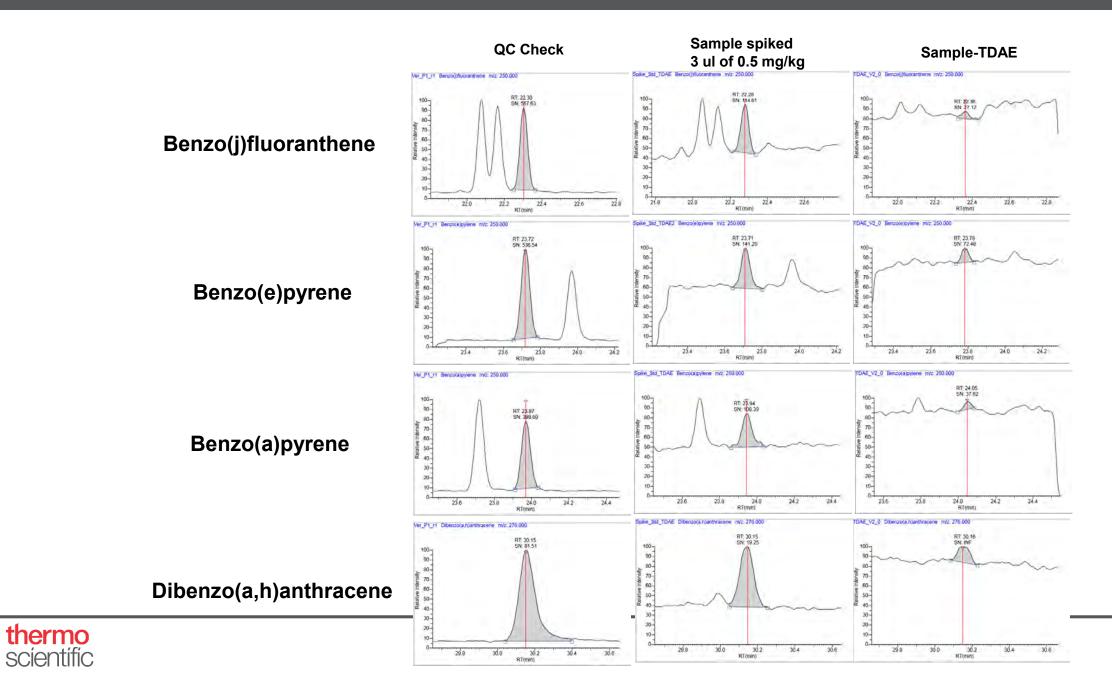
Chromatogram (3) – Standard 8 PAHs with 3 IS(d12)

82 thermo scientific

• Calculated from 10 replicate runs of TDAE sample (Treated Distillate Aromatic Extracted)

	PAHs (mg/kg)							
No.	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(j)fluoranthene	Benzo(e)pylene	Benzo(a)pylene	Dibenzo(a,h)anthracene
1	0.226	0.370	0.198	0.186	0.103	-0.507	0.144	0.125
2	0.220	0.367	0.177	0.165	0.117	-0.510	0.130	0.148
3	0.222	0.361	0.184	0.182	0.127	-0.507	0.137	0.124
4	0.236	0.375	0.194	0.178	0.136	-0.511	0.147	0.149
5	0.221	0.372	0.204	0.168	0.118	-0.518	0.129	0.150
6	0.224	0.366	0.189	0.180	0.117	-0.510	0.129	0.142
7	0.236	0.363	0.192	0.194	0.123	-0.535	0.122	0.139
8	0.221	0.368	0.204	0.178	0.133	-0.509	0.126	0.135
9	0.247	0.369	0.181	0.166	0.118	-0.509	0.125	0.144
10	0.231	0.362	0.202	0.169	0.130	-0.507	0.115	0.147
SD	0.0089	0.0045	0.0097	0.0095	0.0097	0.0086	0.0098	0.0095
LOD	0.0267	0.0134	0.0291	0.0285	0.0291	0.0258	0.0294	0.0286
LOQ	0.0891	0.0447	0.0969	0.0951	0.0972	0.0860	0.0980	0.0955

8 compounds of PAHs have LOQ less than 0.1 mg/kg


thermo

84

Sci Spec

85

Sci Spec

Result.. Recovery

- Two batches of analysis (2 replicates for each batch) from same sample (RPO)
- Recovery of PAHs : Deuterated IS vs. Injection Standard (Decafluorodiphenyl)
- BIU acceptable recovery is between 50% and 150%

Internal standard Standard amount (mg)		Sample		Calculated amount (mg)		Acceptable Criteria of %Recovery	Verified
		RPO_V1_Re01	RPO_V1_Re02	9	6Recovery	-	
Benzo(a)anthracene-d12	4008	4663.572	4719.434	4691.503	117.05	(50-150)	Pass
Benzo(b)fluoranthene-d12	4216	5684.548	5493.625	5589.087	132.57	(50-150)	Pass
Benzo(a)pyrene-d12	4060	5389.764	5301.968	5345.866	131.67	(50-150)	Pass
		RPO_V2_Re01	RPO_V2_Re02				
Benzo(a)anthracene-d12	4008	3532.543	3532.543		88.14	(50-150)	Pass
Benzo(b)fluoranthene-d12	4216	3249.254	3249.254	3249.254	77.07	(50-150)	Pass
Benzo(a)pyrene-d12	4060	3319.878	3319.878	3319.878	81.77	(50-150)	Pass

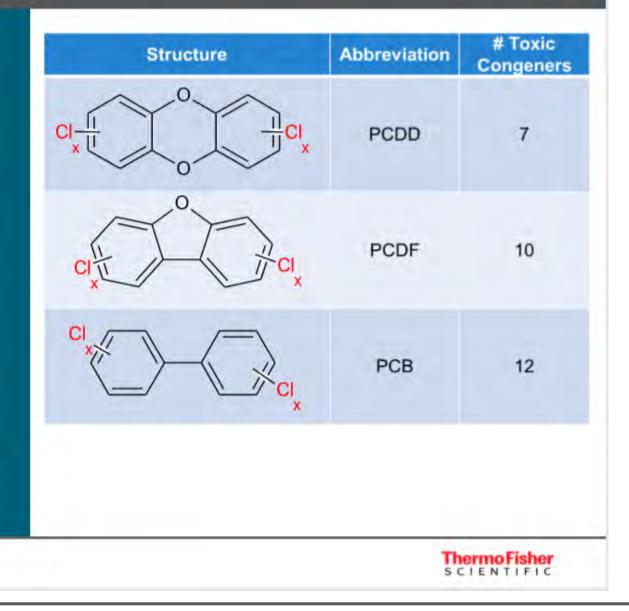
Comments

- Complicated & time consuming sample preparation requires skills and prone to error
- Improvement in separation (triphenylene vs. chrysene) can be done upon availability of standard (triphenylene).
- Comparison study of purification between the two steps i.e. Silica Gel vs. Silica Gel & Sephadex are not so much different.
- New development on sample prep in order to reduce work loads and improve analysis result.

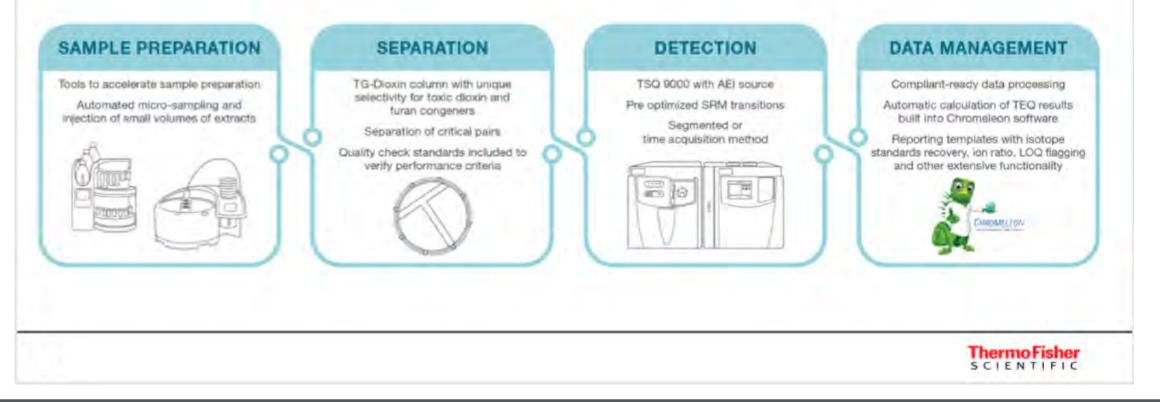
thermo scientific

Simplify the complexity of dioxin analysis

Thermo Scientific Dioxin Analyzer


Thermo Fisher

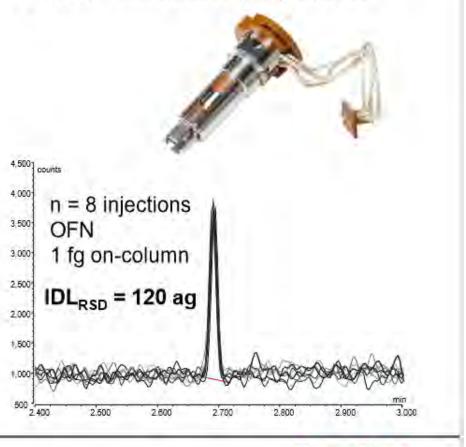
Introduction to Dioxin & Dioxin Like PCBs


- Identified as toxic by the United Nations due to adverse effects on humans and the ecosystem
- The Stockholm agreement was signed in 2001 and entered into EU Legislation in 2004
- Of the possible 419 PCDD, PCDF and PCB congeners only 29 are recognised as toxic, but each have differing toxicity
- Most toxic: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
- Up to 2012 only Magnetic Sector GC-HRMS was acceptable for analysis

The Thermo Scientific[™] Dioxin Analyzer is an integrated, sample-to-result GC-MS/MS based, easy to implement, analytical workflow developed to deliver robust and sensitive quantitation of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzo furans (PCDF) and dioxin-like polychlorinated biphenyls (dI-PCBs), in food and feed samples in compliance with the latest EU regulations (EU Regulation 664/2017).

Features and Benefit of TSQ 9000 AEI

TSQ 9000 Triple Quadrupole GC-MS/MS system with AEI source

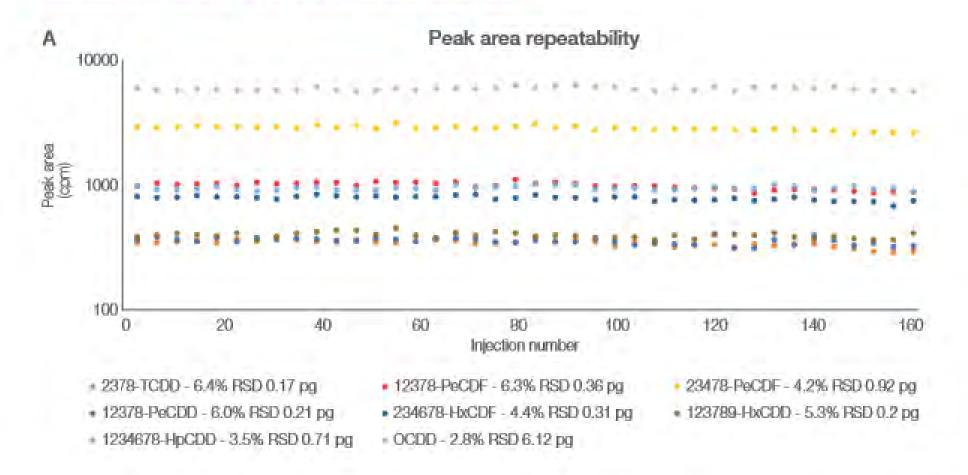

Feature Highly efficient A ionization A more tightly focused L ion beam

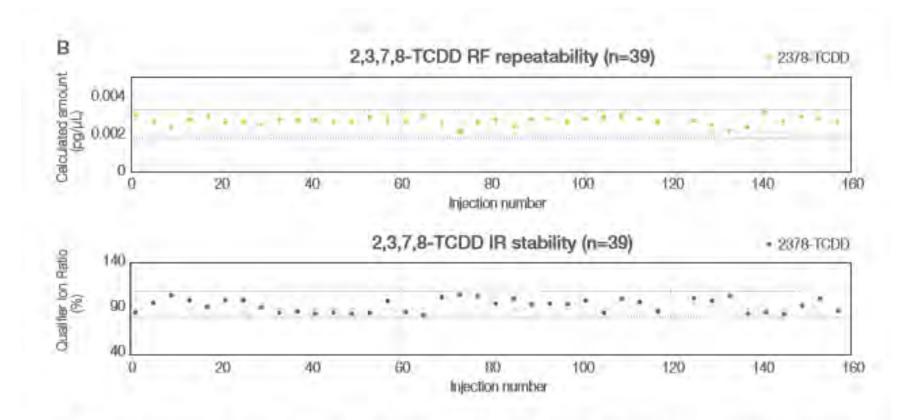
Benefit

A greater ion flux reaching the detector Less ion burn and a higher

degree of robustness

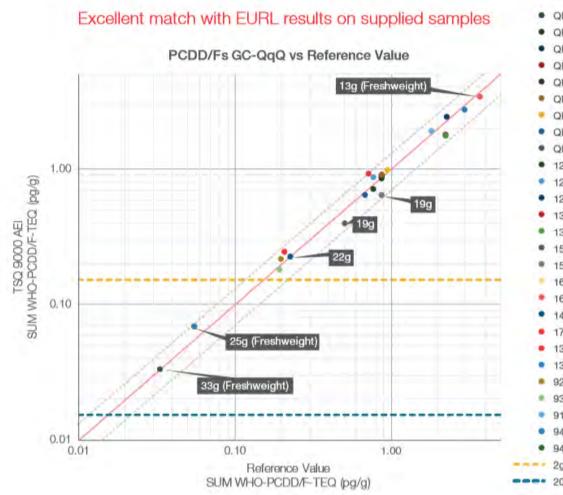
Thermo Scientific[™] Advanced Electron Ionization (AEI) source

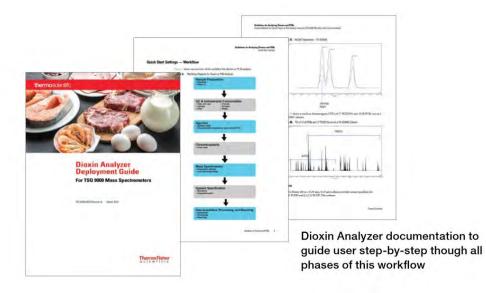



Thermo Fisher

Consistent results over continuous analysis






(A) Absolute peak area repeatability over two weeks of analysis, for selected PCDD/F congeners in pooled matrix sample. Relative standard deviations and amounts on-column (pg) are annotated for each selected congener. (B) LOQ Response Factor (RF) deviation (upper plot, calculated as deviation from target amount) and Ion Ratio, IR, (lower plot) for the 10 fg on-column 2,3,7,8-TCDD congener (2.5 fg/µL, 4 µL injection).

- QK1 1 Mixed fat
- QK1 2 Mixed fat
- QK1 3 Mixed fat
- QK1 4 Mixed fat
- QK1 5 Mixed fat
- QK1 6 Mixed fat
- QK7 Fish oll
- QK8 Meat
- QK9 Grass meal
- 1201-PLA 1 Pork sausage
- 1201-PLA 2 Pork sausage
- 1202-HEA 1 Whole egg
- 1302 MIA 1 Milk powder
- 1302-MIA 2 Milk powder
- 1501-AFB 1 Sugar beet pulp
- 1501 AFB 2 Sugar beet pulp
- 1601-HFA 1 Fish
- 1601-HFA 2 Fish
- 1401-SEA Sepiolite
- 1701-PFA PFAD
- 1301-FF Feed fat
- 1302 MIB Milk fat
- 9255 Meat
- 9373 Milk
- 9182 Eggs
- 9487 Fish
 9488 Fish
- ---- 2g AEI LOQ (UB)
- ---- 20g AEI LOQ (UB)

Sci

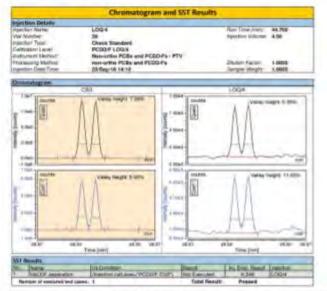
Spec

Error-free execution of routine analysis

The eWorkflow[™] procedures provide a pre-loaded template that captures the unique aspects of a chromatography workflow and guides the operator through a minimal number of choices needed to create a finalized sequence with predefined files and a well-defined method structure. The Dioxin Analyzer eWorkflow includes all pre-optimized SRM transitions, isotope dilution calculation and reporting templates for an error-free execution of the analysis to meet compliance requirements.

Interactive results pane with real-time updates

Interactive results pane showing ISTD recovery and ion ratio deviation (flagged red if outside limits) and upper, middle and lower-bound congener specific result. Sum WHO-PCDD/F-TEQ result and flag to indicate above/below maximum limit (top right). Ion ratio deviation and congener specific contribution to the WHO-PCDD/F-TEQ (bottom right).



Compliance control at a glance

Compliance tools are available in the results pane and dynamically updated during the data acquisition for easy and immediate checking of results, thus saving time. This template shows for instance, internal standard (ISTD) recovery and ion ratio deviation, using a color-coded flag to visually highlight compliance/noncompliance throughout the sequence. Dynamically updated calculation results for sample Toxicity Equivalent (TEQ) are also shown and color flagged for faster action in case the results are outside of the acceptable limits.

System suitability test report

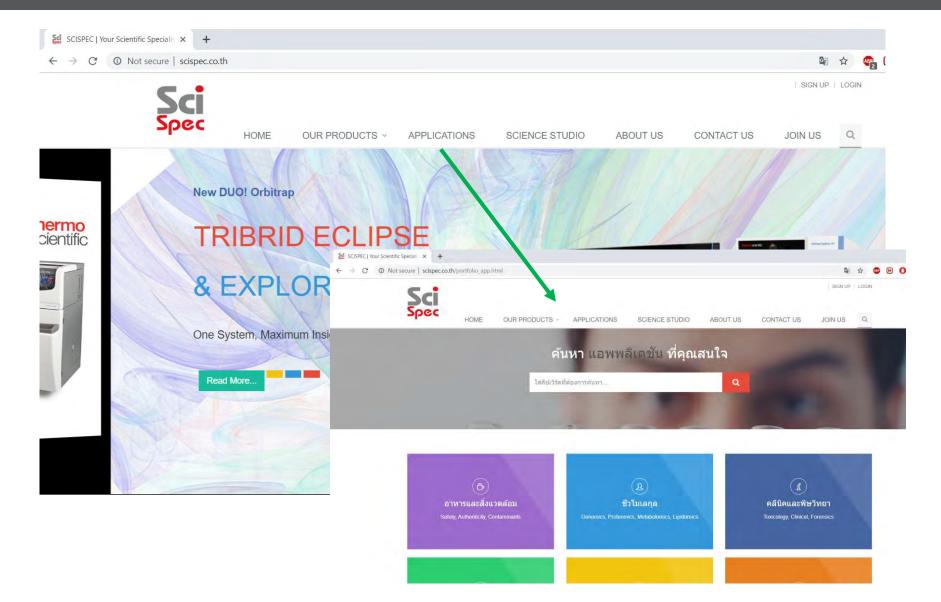
System suitability results built into the method allow for intelligent run control, ensuring samples are only analyzed if the system passes specification, saving repeat analysis time, acquisition and processing of non-compliant data

Built-in reporting tool

To simplify data reporting, the Dioxin Analyzer eWorkflow offers a comprehensive template that includes the required results and calculations to meet all quality and compliance requirements. This includes recovery for ¹³C-labeled standards, ion ratio, sum parameters, and LOQ flagging amongst other features. If needed, the Report Designer enables further customization to meet all reporting and charting requirements.

Comprehensive calibration report

Comprehensive sample report template


A. Key information includes average response factor, response factor deviation and lon ratio B. Key results include ¹³C-labeled standards recovery, ion ratio, sum parameters, LOQ flagging

Thank you.....

http://www.scispec.co.th

