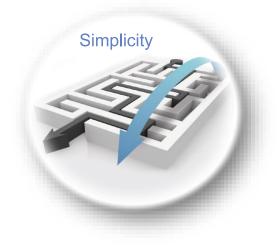


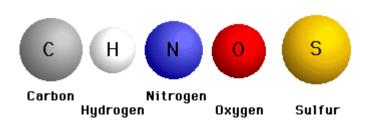
FlashSmart: THE Elemental Analyzer


SciSpec

Kantima Sitlaothaworn

The world leader in serving science

Proprietary & Confidential

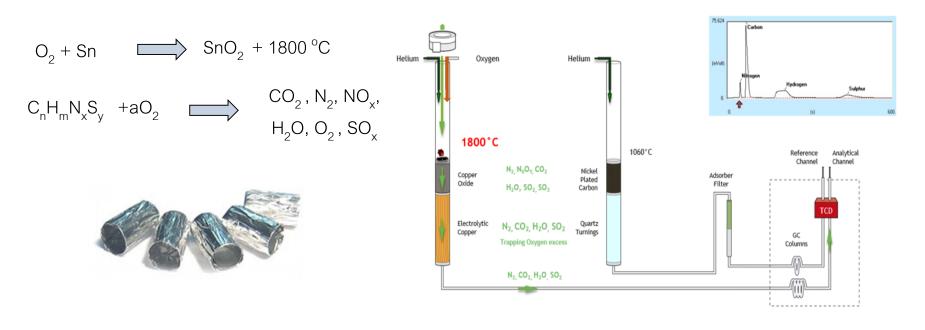


- Principle of the OEA
- Components
- Application Fields

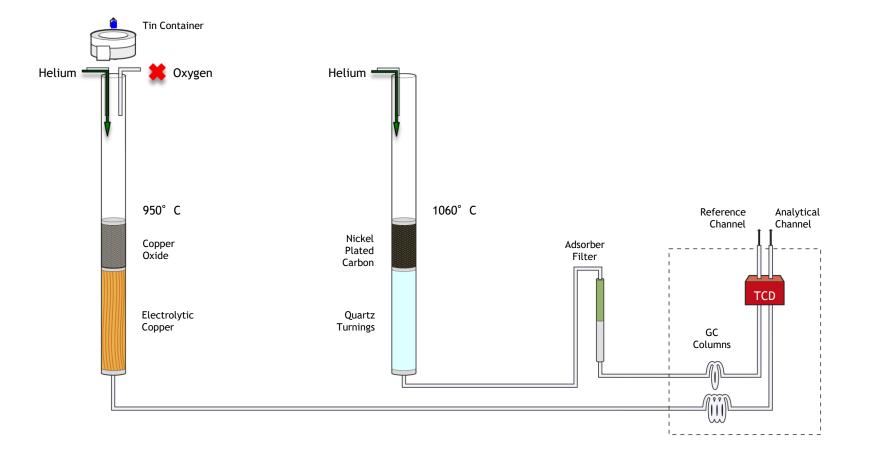
Your Scientific Specialist

Organic Elemental Analyzer "OEA" is a simultaneous technique to determination of

contained in organic and inorganic materials in solid liquid and gas form.

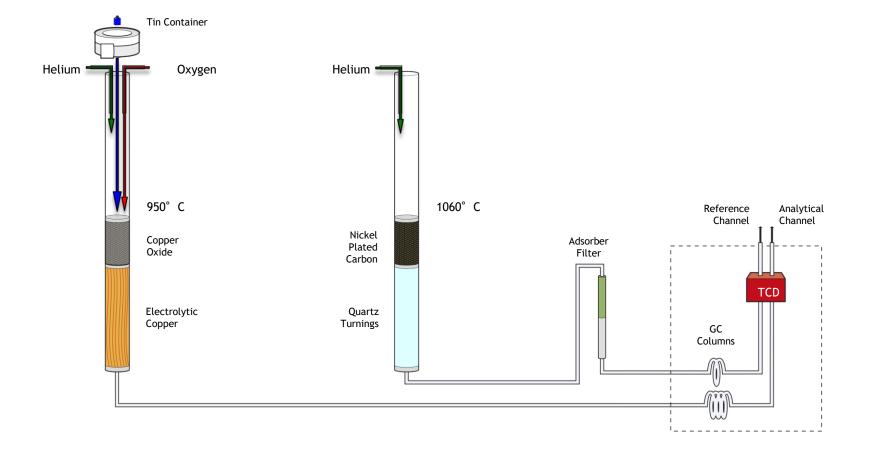

Quantification of the sampleQuantitative oxidation of the sampleReduction of combustion gasesSeparation of the oxidation gasesGeneration of signal

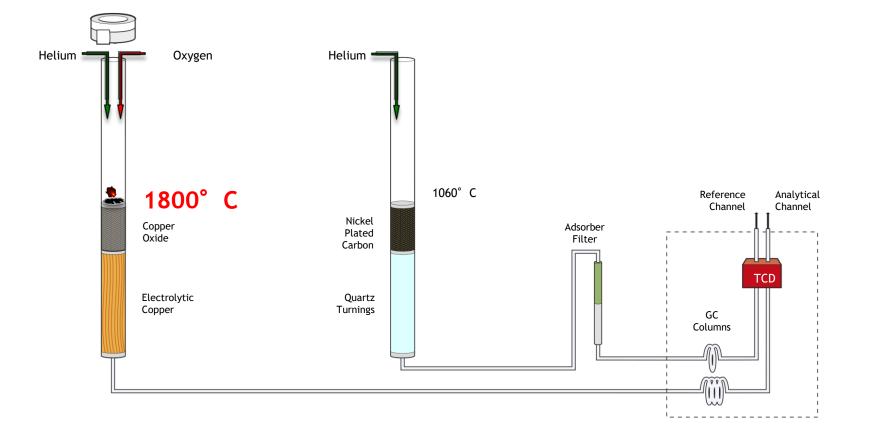
Weighing Combustion Reduction Chromatography Detection

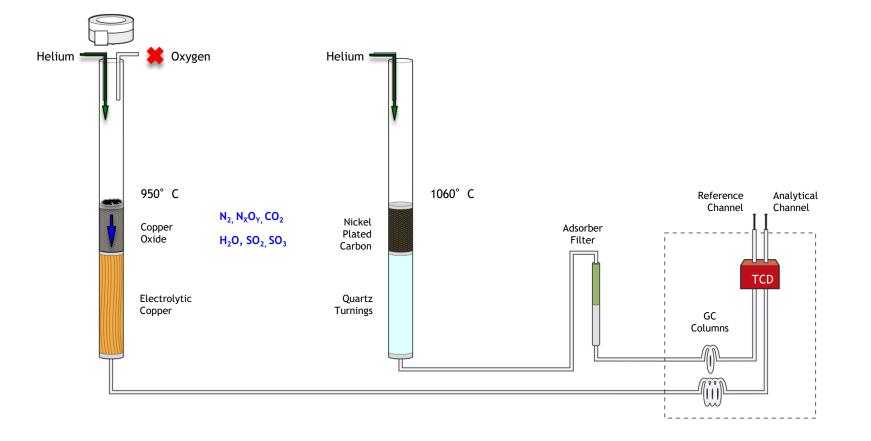

Your Scientific Specialist

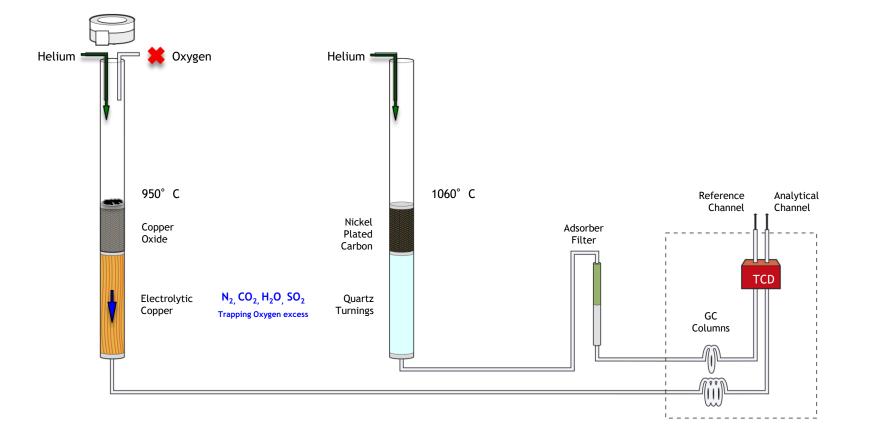
Principle of operation for CHNS

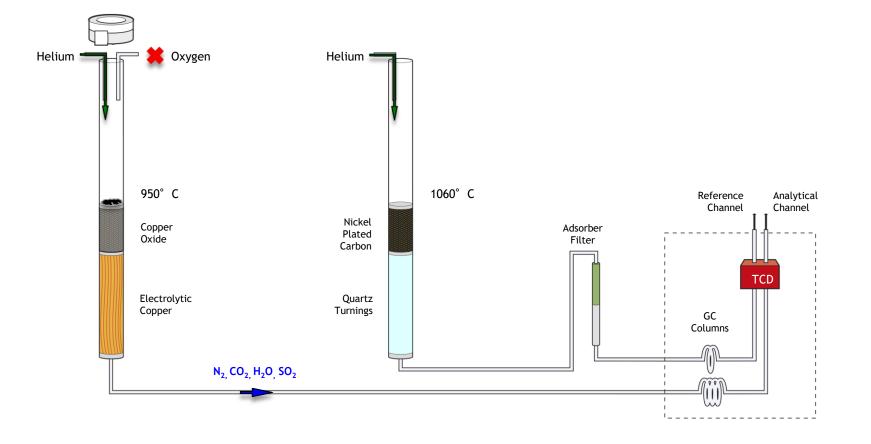
- 1. Organic and inorganic, solid or liquid are weight in a tin capsule
- 2. Introduced into the combustion reactor by and auto sampler
- 3. Inserted in the special furnace heated at 900 1000 °C
- 4. A small volume of pure oxygen is added to the system and helps to burn the sample
- 5. Reduction "using Copper" converting the sample into element gases
- 6. A separation column and TCD detector allows the user to determine elements

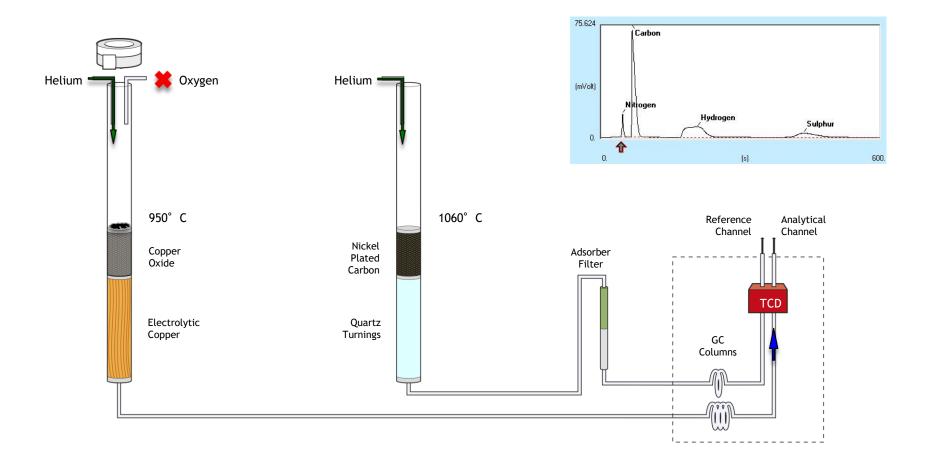




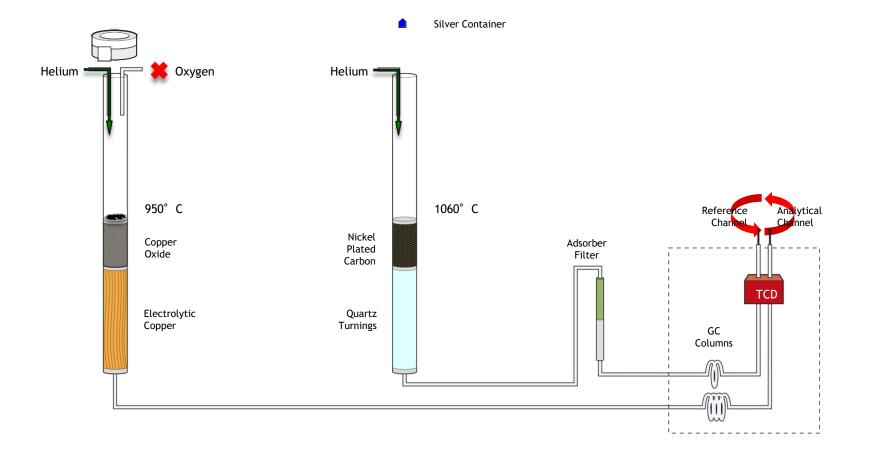

CHNS-O Analytical configuration CHNS Analysis



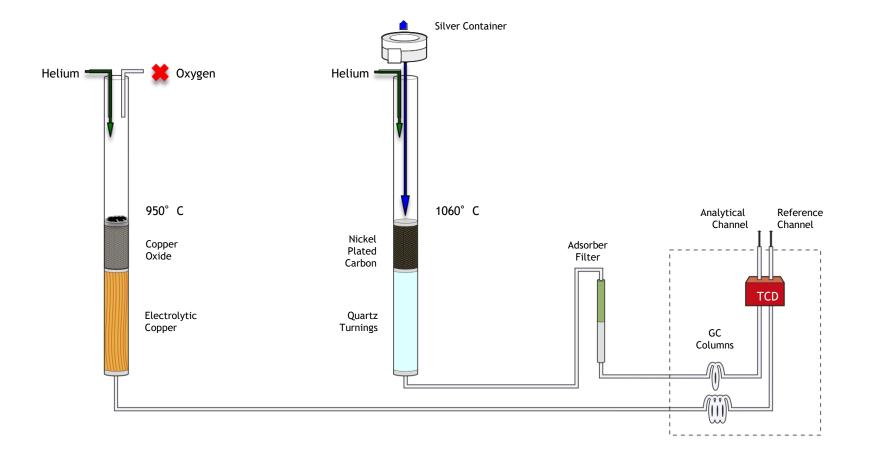




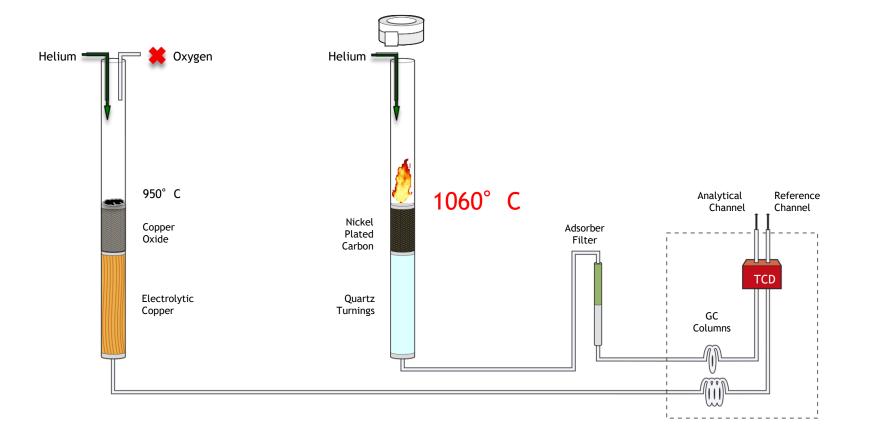
CHNS-O Analytical configuration CHNS Analysis

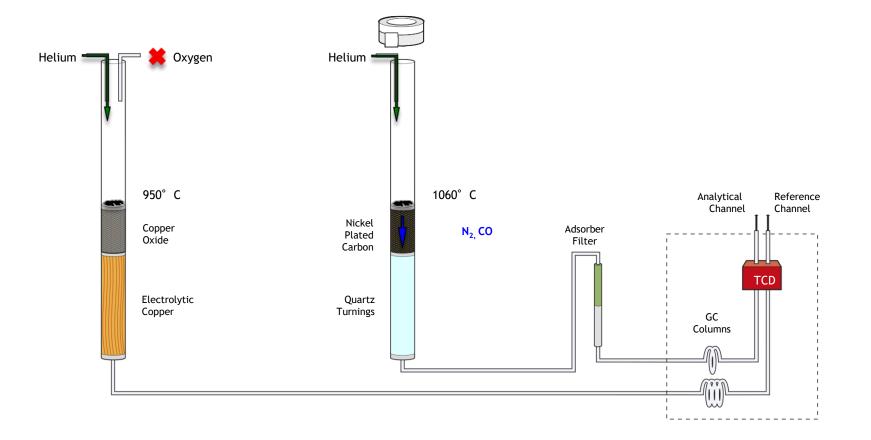


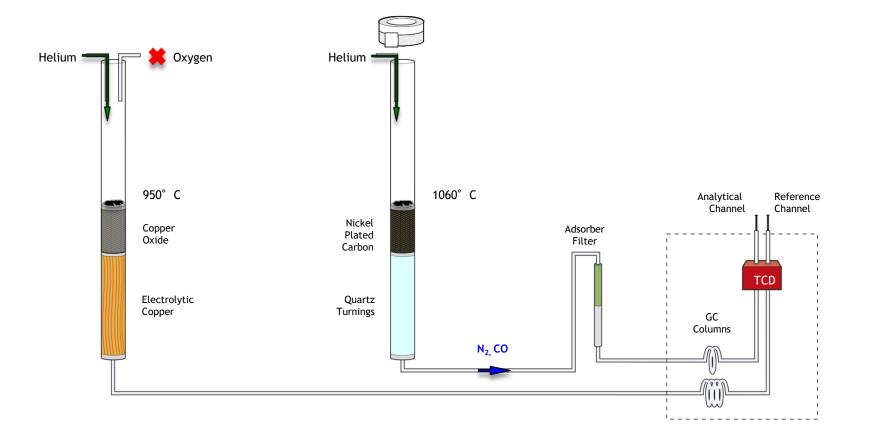
- The system operates in pyrolysis mode.
- Samples are weighed in silver containers and introduced into the pyrolysis reactor from the auto-sampler.
- The reactor contains nickel coated carbon maintained at high temperature (1060 °C).
- The oxygen present in the sample, combined with carbon, forms carbon monoxide which is then chromatographically separated from other products and detected by the TCD Detector.

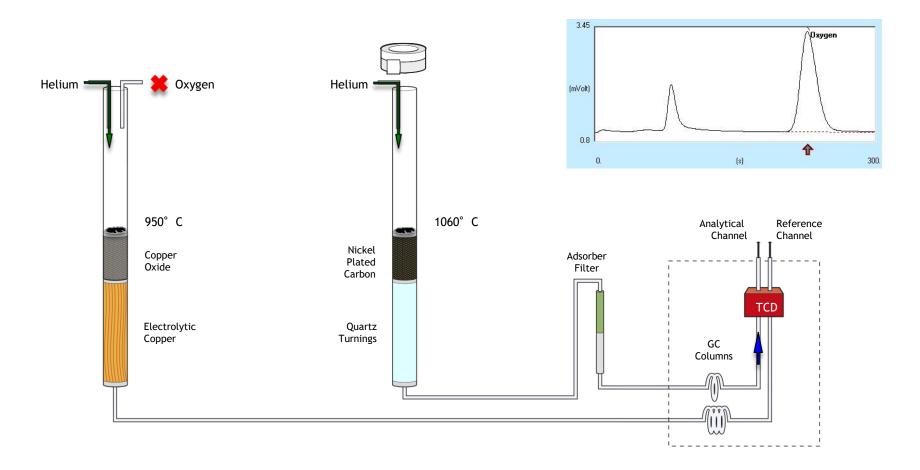

$$O_2 + 2C \longrightarrow 2CO$$

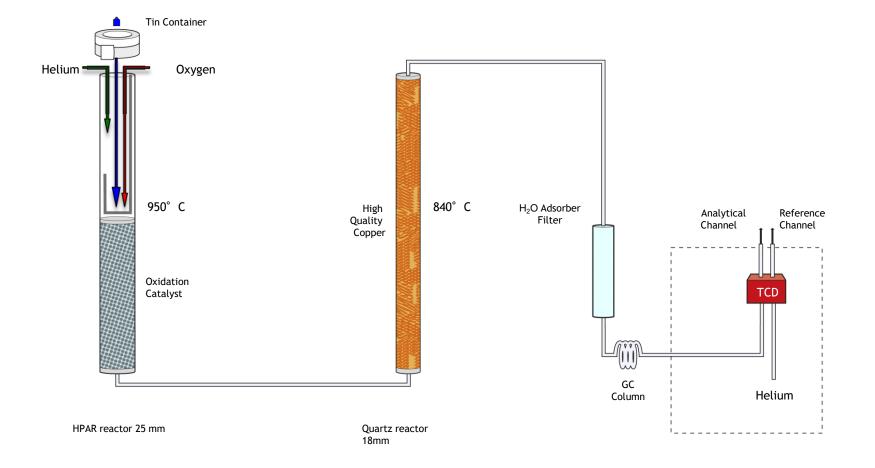
Basic prerequisite: all Oxygen must be converted to CO

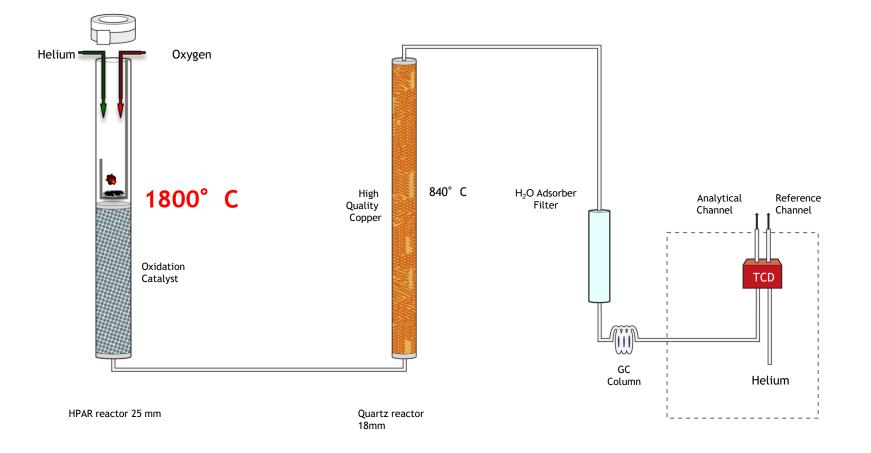


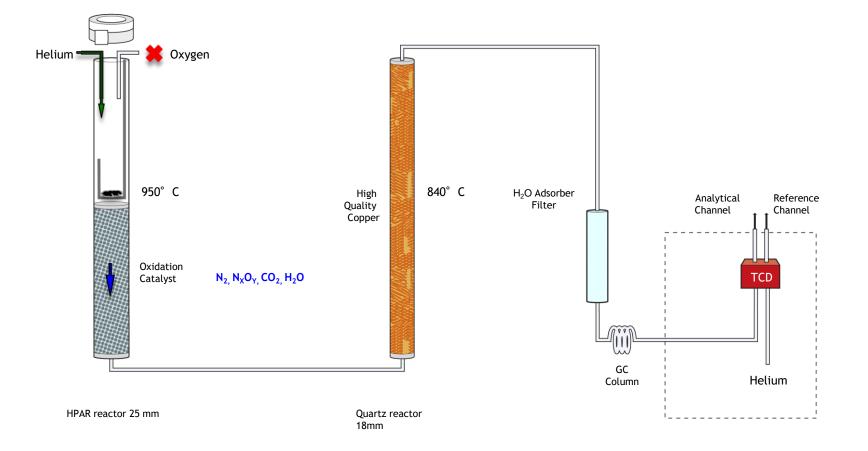


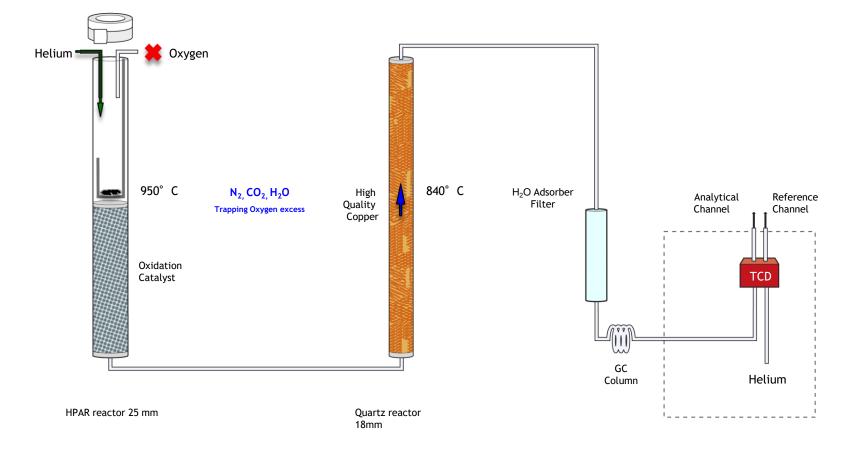


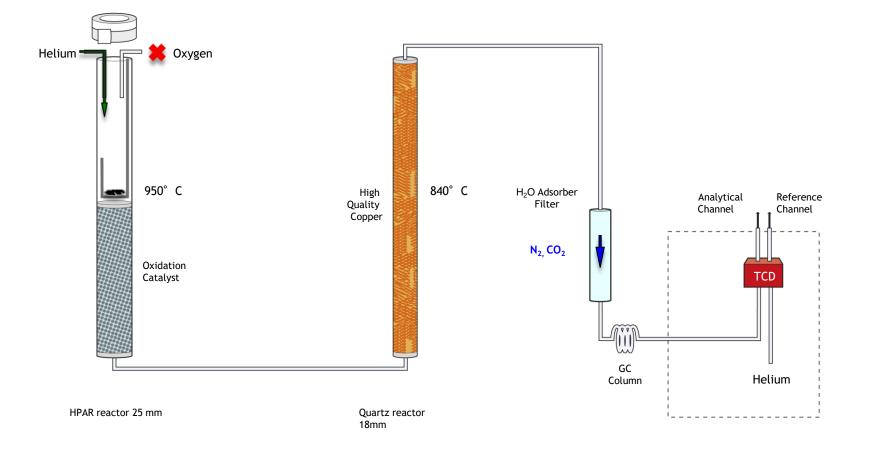


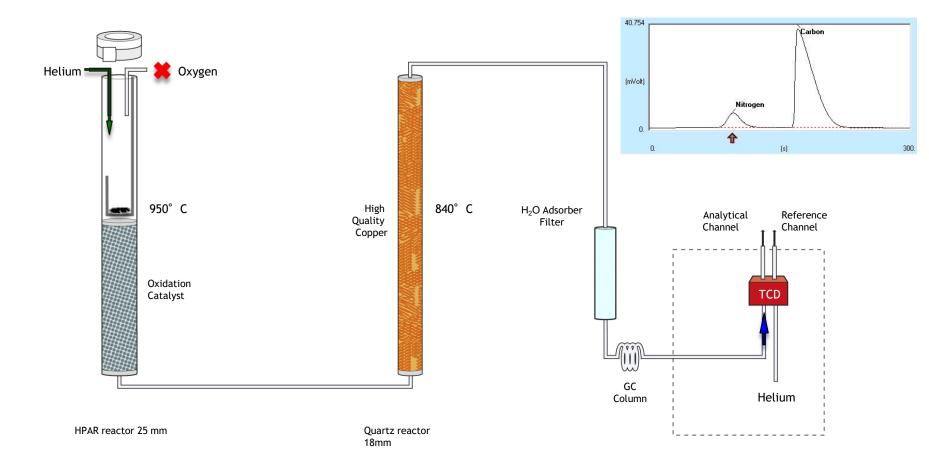






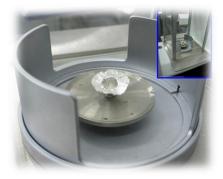






Measuring range	0.01 % (100 ppm) to 100 % for solid	
Sample Size	CHN, CHNS, NCS, CHN/O, CHNS/O, CHN/CHN, CHNS/CHNS	0.01-100 mg (according to the sample nature)
	N Org, NC org	0.01-300 mg (according to the sample nature)
	N Lubricant	5-20 mg (according to the sample nature)
		1 mg to 1 g (according to the sample nature)
	NC Soil	Nominal size for soil material (NC det.) : 50-100 mg (if the material
		contains low C% such as sand, the weight can increase up to 1 g)
	N/Protein, N Brew	10 mg to 1 g (according to the sample nature)

Analysis Time	CHN, CHNS, NCS, CHN/O, CHNS/O, CHN/CHN, CHNS/CHNS	CHN less than 7 mins CHNS and NCS less than 10 mins Oxygen less than 5 mins
	N Org, NC org	Less than 5 mins
	N Lubricant, N Brew	Less than 6 min (according to the sample nature)
	NC Soil	Less than 5 min (according to the sample nature)
	N/Protein	Less than 5 min (according to the sample nature)

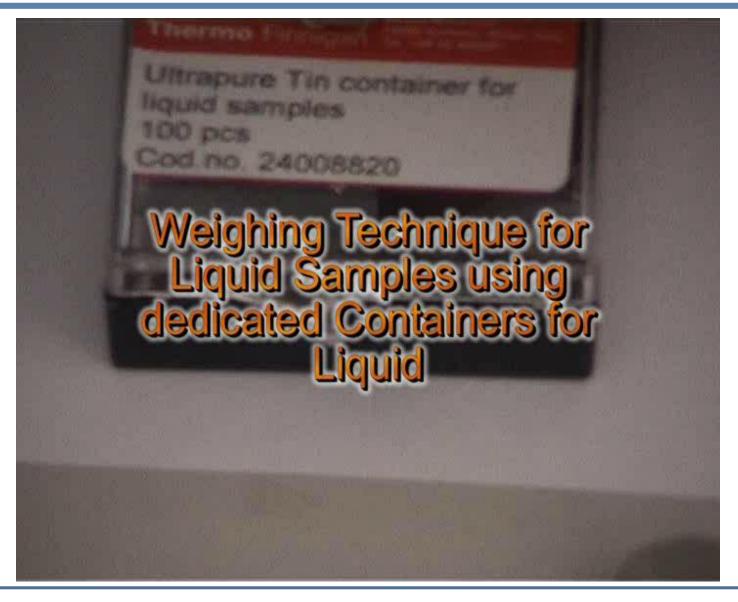


Containers

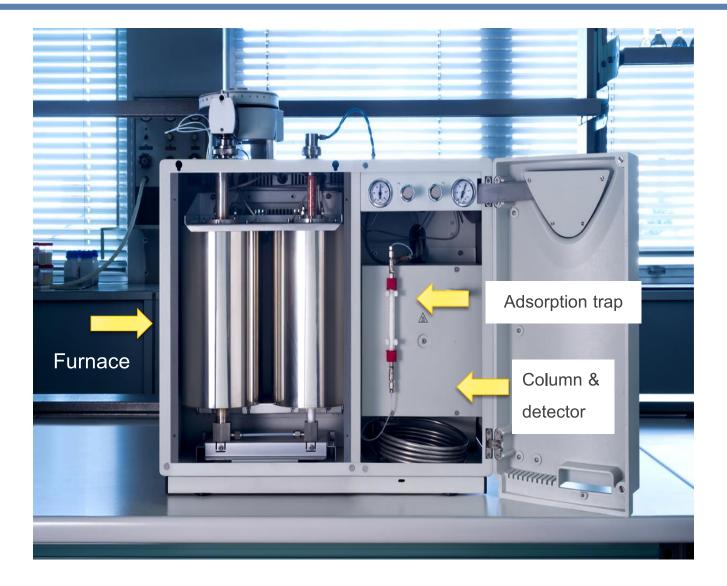
Sealing Device for LargeTin Containers



Solid



Liquid



Components of OEA - Autosampler

Furnace

Furnace

- One or two totally independent furnaces
- Maximum temperature of 1100 °C
- Furnace design: fast heating
- Decrease by 50% of the furnace temperature in Stand-By Mode
- Unique serial number for each furnace
- For oxygen determination (by pyrolysis), the same furnace is used
- 15-year warranty under standard operational conditions
- Easy to install
- Easy to use

Label with the Serial Number

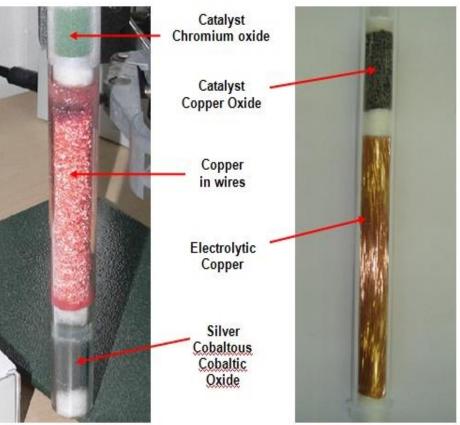
Reactors and traps

- The reactors can be quartz tubes or special steel tubes.
- Pre-packed tubes for most configurations
- "Quick Connector" : no more tools needed
- Computer guided maintenance schedule

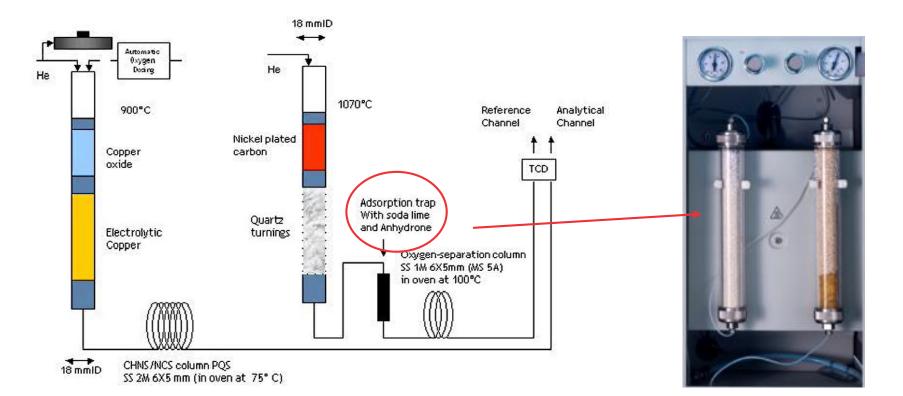
Pre-packed CHN reactor (Argon sealed)

EASY TO USE AND SIMPLE TO MAINTAIN

Reactors and traps

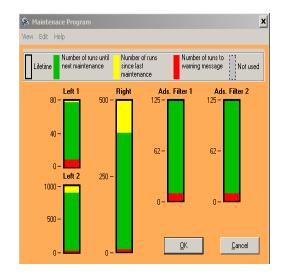

CHN Type of Catalysts: CuO (for CHNS, NCS, S, N, NC), Catalyst Chromium oxide Cr_2O_3 (for CHN), Catalyst Mix of Copper oxide and Pt on alumina Copper Oxide (for N Lubricant, N/Protein, NC Soil) Type of Copper: Copper in wires Electrolytic Copper for CHNS / NCS / S configurations Copper in small wires for all the other Electrolytic Copper configurations.

Silver cobaltous-cobaltic oxide


(for CHN, N, NC).

Trap the Sulfur and halogens (except fluorine)

CHNS



- 1. Anhydrone (Magnesium perchlorate)
- 2. Soda Lime
- 3. Molecular Sieve 3 Aº / Silica Gel plus indicator

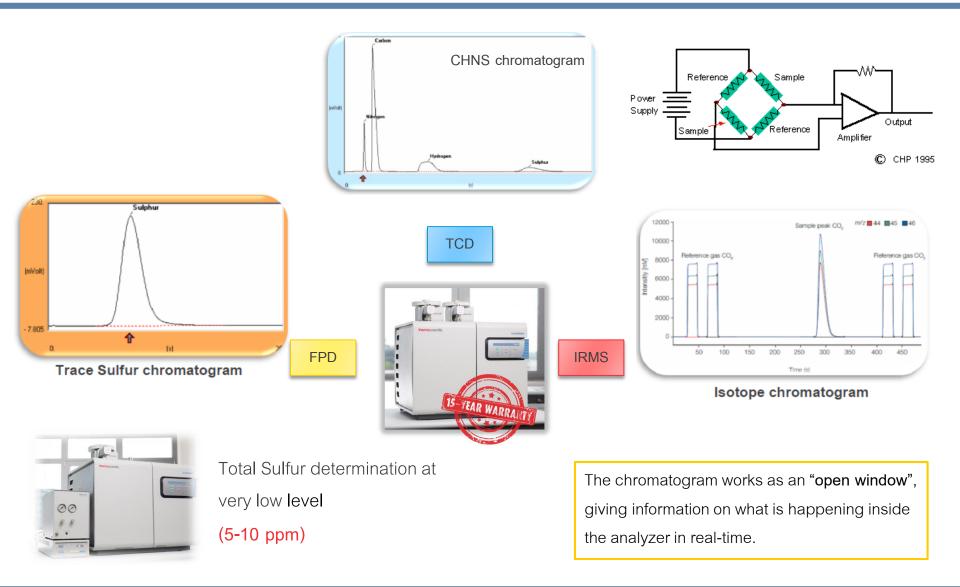
Lifetime Reactors according to the configuration (number of analysis)

Configuration	CHN, CHNS, NCS, S Oxygen	N org, NC org double reactors	N Lubricant double reactors	NC Soils double reactors	NC single reactor	N/Protein double reactors	N/Protein single reactor
Reactor	250 - 300	Comb. 400 - 500 Red. 400 - 500	Comb. ≥ 3000 Red. ≥ 1500	Comb. ≥ 1000 Red. 400 - 500	≥ 400	Comb. ≥1000 Red. 500 - 1000	≥550
Traps	H ₂ O Trap 120 - 150	CO ₂ Trap ≥ 120 H ₂ O Trap ≥ 120	CO ₂ Trap ≥ 200 H ₂ O Trap ≥ 200	H ₂ O Trap ≥ 120	H ₂ O Trap 90 - 150	CO ₂ Trap ≥ 120 H ₂ O Trap ≥ 120	CO ₂ Trap 150 - 170 H ₂ O Trap 150 - 170

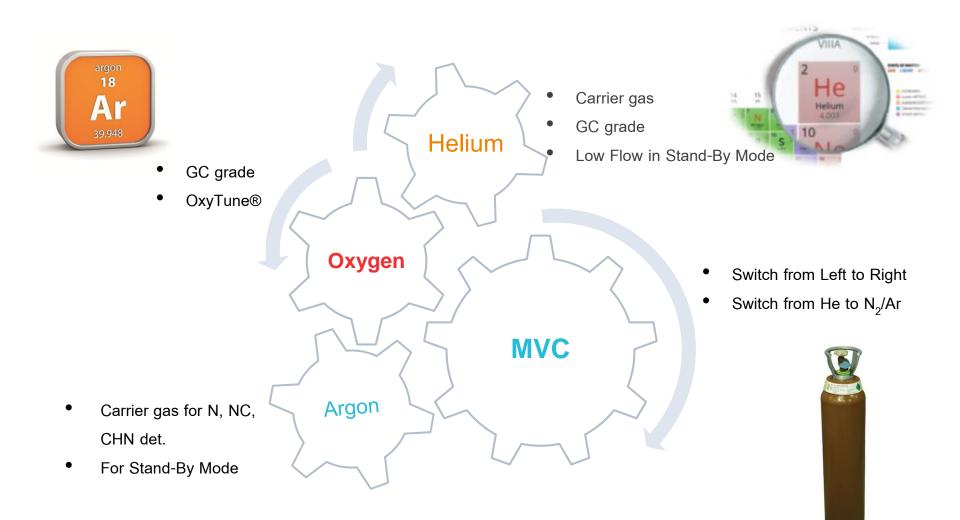
Note: the lifetime depends of the sample nature and sample weight

GC Columns and Detectors

- The Column can be kept at room temperature or it can be placed in the thermostatic chamber of the TCD
- Maintenance free, Long lifetime GC column operating for years without the need for replacement



CHNS-O / CHN-O


		Character	ristics							An	alyti	cal D	eterr	ninat	ion					
	Material	Length (cm)	OD (mm)	ID (mm)	CHNS	CHN	NCS	S (TCD)	S (FPD)	0	z	N/Protein	N-Brew	NC	NC-Soil	NC-Sediments	NC-Filters	IRMS (NC)	HT (NC)	HT (O/H)
	Steel	100	6	5						V										•
		200	6	5										r	r	V	V			
		300	6	5														~	~	
ŝ									_	_	_	_	_	_						
Columns	PTFE	15	6	4					~											
Col		50	8	6							V	~								
		80	6	4				~												
		100	8	6									V							
		200	6	5	V	~	~													

GC Columns and Detectors

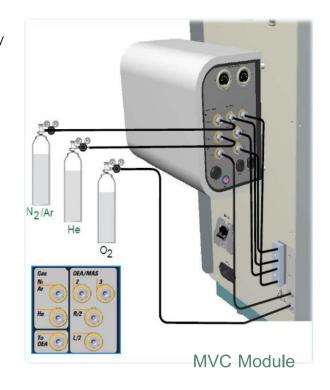
Helium Consumption : Carrier gas

Helium consumption	Always Ready	Option 1 Standby- mode	Option 3 MVC module (N ₂ standby)	Option 4 Argon gas Carrier gas
Configuration	All	All	CHN/O, CHNS/O, CHNS/CHNS, CHN/S, NCS/O, NC/S	N org, N/Protein, NC org, NC soil, CHN
Per working day – 8 working & 16 Standby hours	345 L	134 L	115 L	ΟL
Per one week - 5 working day	2149 L 729 L		576 L	0 L
Per month – 4 weeks	9676 L	2918 L	2310 L	0 L
Lifetime / week	~ 3	~ 9	~12	-

The analytical times are taken as **8 hours per day for 5 days** and all other time the Analyzer is in Stand-By Mode.

The values are calculated from a carrier gas flow of 140 ml/min and reference flow of 100 ml/min during analysis times and carrier gas flow of 10 ml/min and reference flow of 10 ml/min during Stand-By Mode.

Helium bottle 7,000 liters, 200 bar



MVC function analysis

Switching from Left to Right furnace or from Right to Left furnace automatically
Reduce the consume of helium carrier gas switching to N₂ or Argon gases.
Standby automatic function using He, N₂ or Argon gases
Auto-Ready: return automatically to Helium as carrier gas if the system
remained with N₂ or Argon gases in Standby

The only Fully automated OEA in the Market by Thermo Scientific

Oxygen cylinder lifetime based on a cylinder containing 7,000 liters, 200 bar

Configuration			N / Protein						
Configuration	CHN/CHNS/NCS	NC soils	Category A	Category B	Category C	Category D			
Oxygen consumption / Day	12.083 L	9.167 L	31 L	27 L	15 L	9 L			
Days per Oxygen bottle	579	763	225	259	466	777			
Months per Oxygen bottle	~ 19	~ 25	~7	~ 8	~ 15	~ 25			

E
ER AZIONE (SPA))
AS COMPOSITION, IN CLASS 9
NTERNET CLAIM TO ANY PAR-

calcu	window prov lation of the	oxygen qu	antily neede	d for optin	nal combust	ion.
Samp	le # 36		Type Unk	W	/eight (mg): 30	0
utomatio	: Oxygen quant	ity:				_
(Weigł		Category A n time (s): 7 1.3)+	78			
(Weigł	Oxyge	n time (s): 7	78	D	E	
1	0 xyge 1t * 20 / 100 * [n time (s): 7 1.3)+ [78 0 sec	D Beer	E	
1 2	Охуде 1 * 20 / 100 * [А	n time (s): 1.3)+ B	78 0 sec C	7/2	E	
1 2	0xyge 1t*20/100* A Forage	n time (s): 1.3)+ B Cereals	78 0 sec C Soil	Beer	E	
1	Oxyge * * 20 / 100 * [A Forage Fodder	n time (s): 1.3) + B Cereals Pasta	78 0 sec C Soil Fertilizer	Beer	E	
1 2 3	Owyge nt*20/100* Forage Fodder Leaves	n time (s): 7 1.3) + B Cereals Pasta Flour	78 0 sec C Soil Fertilizer Milk	Beer	E	
1 2 3 4	Owyge * * 20 / 100 * [A Forage Fodder Leaves Tobacco	n time (s): 1.3)+ Cereals Pasta Flour Meat Cheese	78 0 sec C Soil Fertilizer Milk	Beer	E	
1 2 3 4 5	Oxyge * * 20 / 100 * [A Forage Fodder Leaves Tobacco Cocoa	n time (s): 1.3)+ Cereals Pasta Flour Meat Cheese	78 0 sec C Soil Fertilizer Milk	Beer	E	

			NA 935575	200	1000.000 Allowed
Samp	le # 36		Type Unk	W	eight (mg): 30
	and the second second	Category I	3		
(Weigł	* * 20 / 100 *		0 sec		-
	* * 20 / 100 * A	1.1)+ [B	0 sec C	D	E
1	* * 20 / 100 * A Forage	1.1)+ B Cereals	0 sec C Soil	Beer	E
1	* * 20 / 100 * A Forage Fodder	1.1)+ B Cereals Pasta	0 sec C Soil Fertilizer	and the second s	E
1 2 3	* * 20 / 100 * A Forage	1.1)+ B Cereals	0 sec C Soil	Beer	E
1 2 3 4	* * 20 / 100 * A Forage Fodder	1.1)+ B Cereals Pasta	0 sec C Soil Fertilizer	Beer Juice	E
1 2 3	* 20 / 100* A Forage Fodder Leaves	1.1)+ B Cereals Pasta Flour	0 sec C Soil Fertilizer Milk	Beer Juice	E
1 2 3 4	* 20 / 100* A Forage Fodder Leaves Tobacco	1.1)+ B Cereals Pasta Flour Meat Cheese	0 sec C Soil Fertilizer Milk	Beer Juice	E
1 2 3 4 5	* 20 / 100 * A Forage Fodder Leaves Tobacco Cocoa	1.1)+ B Cereals Pasta Flour Meat Cheese	0 sec C Soil Fertilizer Milk	Beer Juice	E

Application Fields

N/Protein in Food and Animal Feed

What are the typical Applications?

Cereals, malt, barley, beans and seeds

Milk and dairy products

Meat and meat products

Beverages

Animal feed

Food Supplements

Which FlashSmart configuration can we offer? N / Protein NC, CHNS/O, S With or without MVC Module AI/AS 1310 Liq Autosamplers FPD detector

Who is the user?

Universities & Res. Inst. Quality Control

Food & Feed Producers

Contract Labs

What are the needs? Easy to use and easy to maintain Maximum flexibility Automatism and Productivity Low cost per analysis Unattended operations Comparable with Kjeldahl Method

FlashSmart Features

Solids and liquid samples High Automatism, Productivity & Modularity Reduced consumption of Helium and Oxygen Comparable with Kjeldahl Method

Method:

Weigh approx. 2 g of sample

Add catalyst: 7 g K₂SO₄, 0.25 g HgO

Add 15 ml H₂SO₄

Add 3 ml H₂O₂

Digestion at 410 °C for 45 min

Cool for 10 min

Add NaOH/ Na₂SO₃ solution

Steam distillation

Collect in H₃BO₃

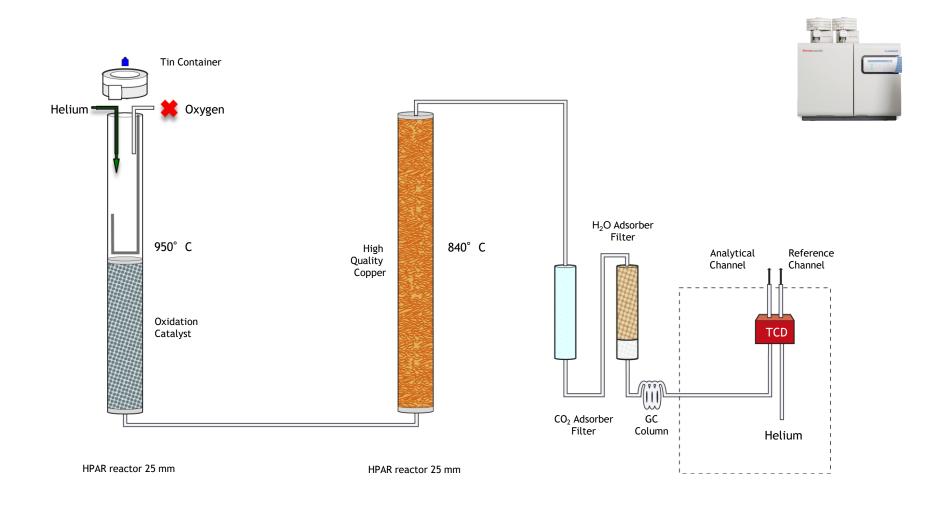
Titrate with HCI

Kjeldahl user's nightmares !! SAFETY

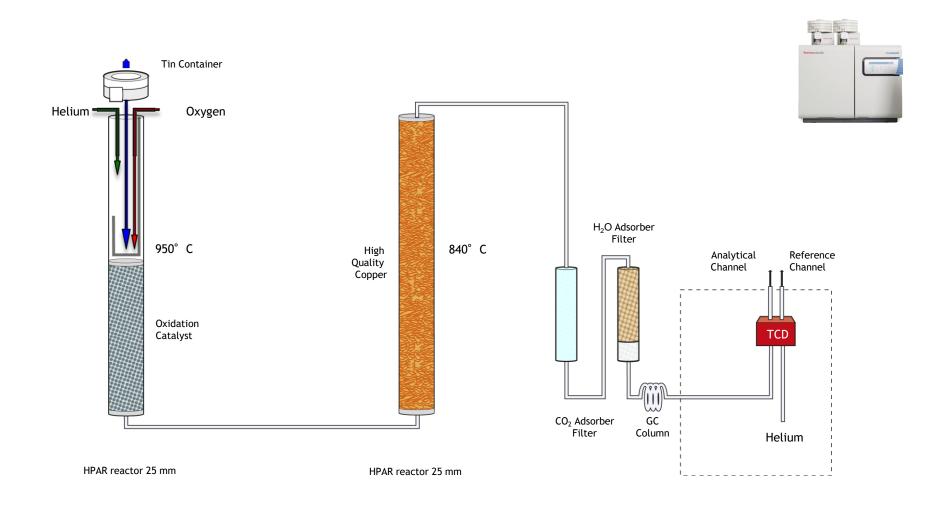
Concentrated acids at boiling temp

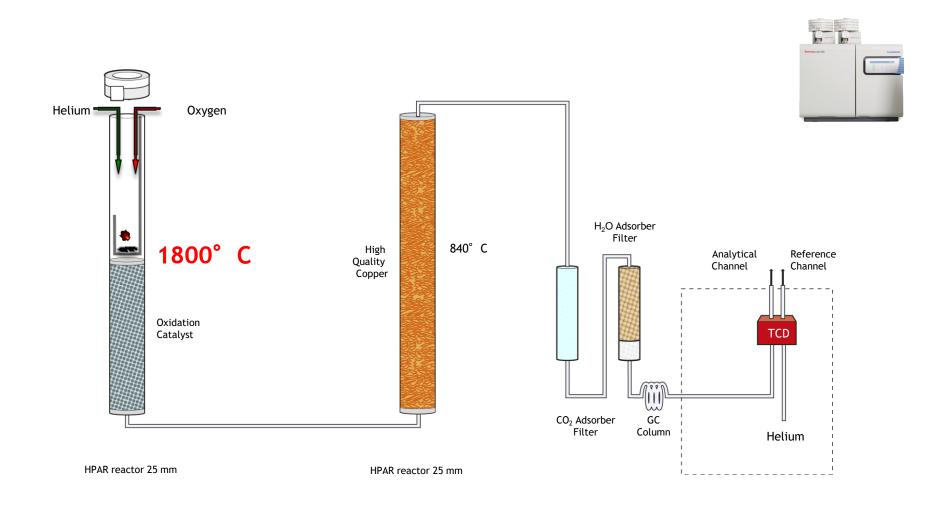
Toxic catalyst and chemicals

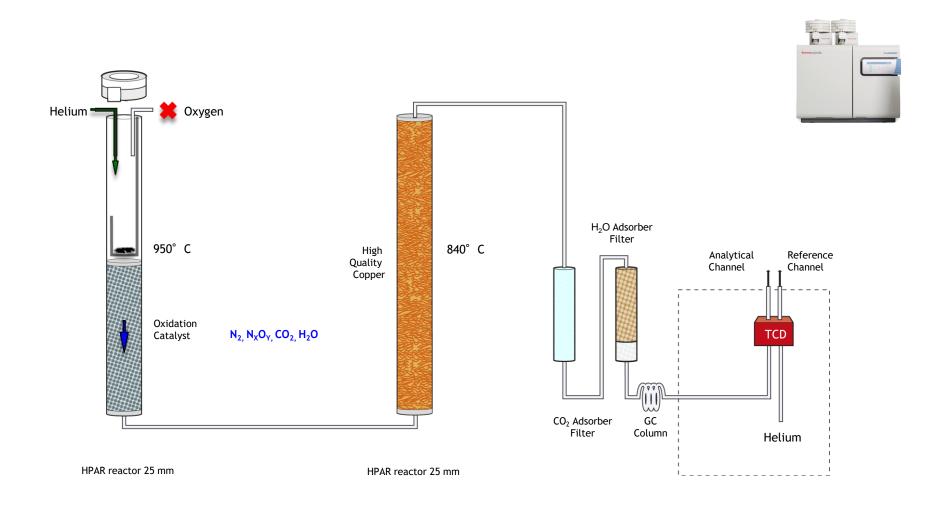
WASTE DISPOSAL

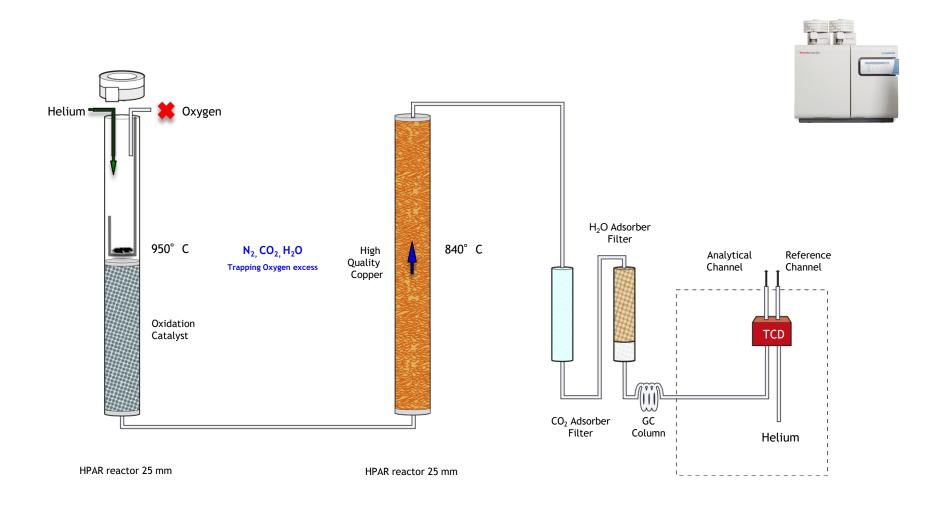

TIME CONSUMPTION

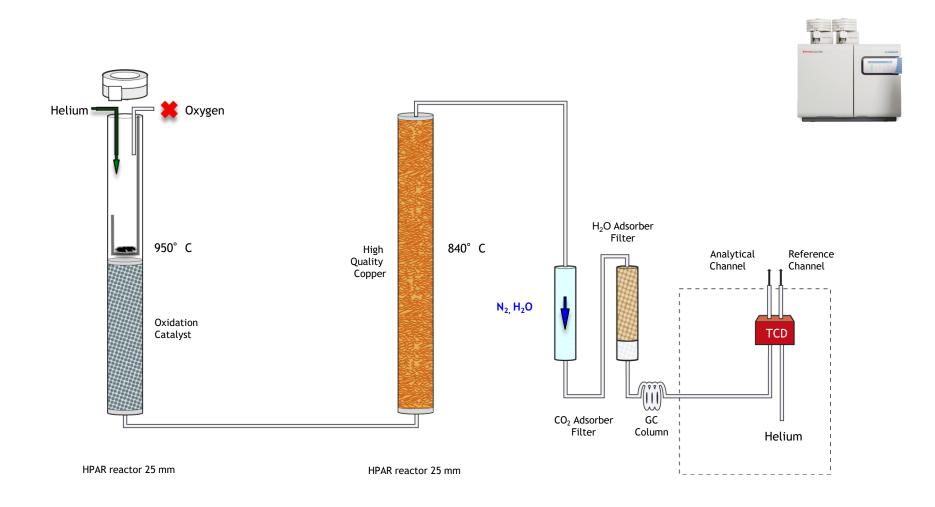
RELIABILITY OF RESULTS

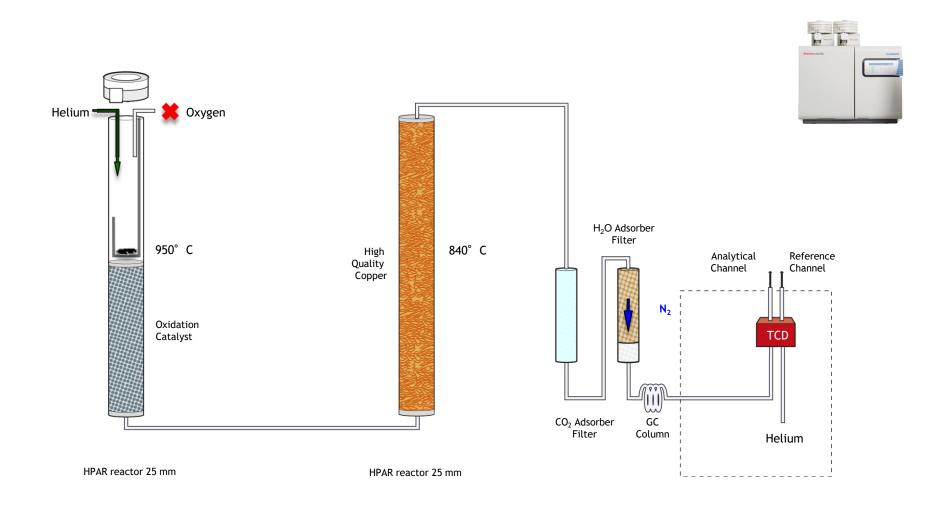


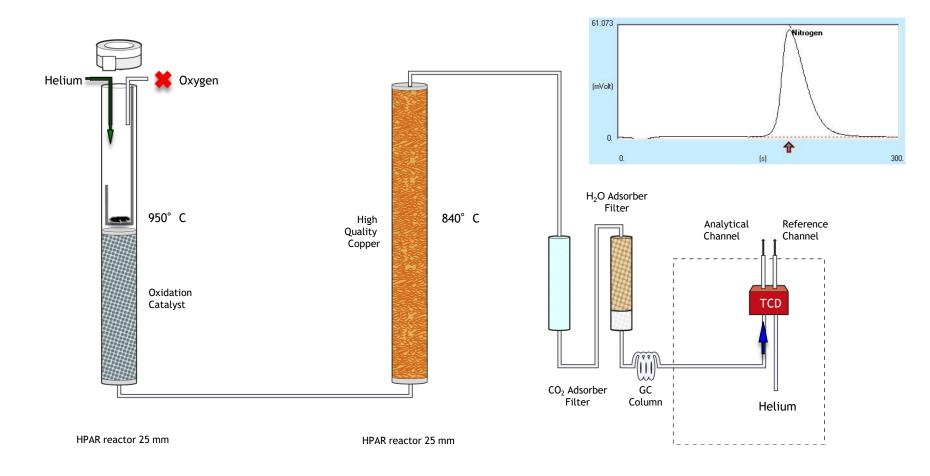












Nitrogen/Protein configuration / double reactor

OEA vs. Kjeldahl Method – Technical Comparison

Information	Kjeldahl method	OEA (Flash <i>Smart</i>)
Range of sample weight	500-1000 mg (2000 mg)	100-1000 mg (solid, viscous and liquid)
Procedure steps	Sample preparation Weighing –digestion –distillation –titration - Calculations - results	Sample preparation Weighing –Analysis- results
Timing		
Warming up	10-45 mins (once a day)	30 mins from standby mode Warming up is not needed using the wake-up automatic function
Preparation of reagent	10-20 mins	Filling of two reactors and two traps : 20 mins
Digestion	2-6 hrs	No
Cool down	20 mins – 2 hes	No
Nitrogen analysis time	10 mins	4-6 mins
Other steps	5-10 mins (distillation/titration, washing of distillation system)	No
Total time for one N determination	3-10 hrs	4-6 mins/sample (samples can be weighed during a sequence of analysis

OEA vs. Kjeldahl Method – Technical Comparison

Information	Kjeldahl method	OEA (Flash <i>Smart</i>)		
Safety	High cost	Low cost		
	Concentration acids at boiling temp.	No fumes, acids and toxic reagents		
	Toxic catalyst and chemicals, corrosive	No atmospheric pollution		
	Glass tubes	Special stainless steel tubes		
	Consumables : H_2SO_4 96-98%, NaOH 40%	Consumables : CuO, Pt on alumina, Copper, Soda		
	H ₃ BO ₃ 3%, HCl 0.1 N, CuSO ₄ 5H2O, ZnSO ₄ ,	lime, molecular sieve, quartz wool, silica gel		
K ₂ SO ₄		The separation column is not a consumable		
	Damage			
Lifetime of instrument	Moderate lifetime due to acidic environment	Long lifetime of instrument		
	Frequent serving every 3-4 months			
Leaking problems	Often rubber tubing breaks, leading to leaking	None. Automatic leak test is performed after		
		maintenance		
Maintenance	High	Low		
Capacity	6-20 per day (the capacity is limited by the	1 dum. for 32 samples and can up to 125		
	digestion time)	samples		
Automation	No automatic sample loading/digestion/	Automatic MAS autosampler		
	distillation	Automatic protein calculation		
	Manual protein calculation			

Analysis of BIPEA (Bureau Inter Professionnel d'Etrudes Analytiques, France) Reference Material.

The first table shows the average and range indicated in the relative Reference Materials Certificates.

The second table shows the N/ Protein data of the BIPEA samples analyzed in duplicate by the Flash*Smart* using a sample weight of about 200 – 300 mg.

BIPEA sample information available

Sample	Moisture	Fat	Carbohydrate	Kjeldal		dahl	l Protein	Combustion Protein	
	%	%	%		Av.%		Tolerance	Av.%	Tolerance
Bipea - Feed for Sow	9.8	2.8	48.7		16.0		0.6	16.2	0.6
Bipea - Dehydrated Alfalfa	7.7		29.3		14.8		0.6	15.1	0.6
Bipea - Hyperproteic Powder		0.8			85.4		3.4	86.4	3.5

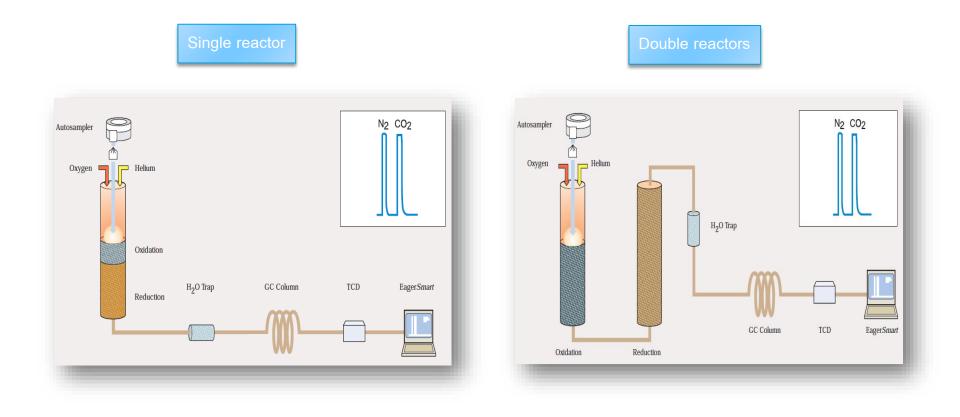
Reproducibility of Nitrogen / Protein determination in BIPEA Reference Materials

Sample	Bipea - Fe	ed for Sow	Bipea - Dehy	drated Alfalfa	Bipea - Hyperproteic Powder			
%	N %	Protein %	N %	Protein %	N %	Protein %		
	2.60	16.25	2.45	15.31	13.65	85.31		
	2.58	16.12	2.44	15.25	13.63	85.19		
Average %	2.59	16.185	2.445	15.28	13.64	85.25		
RSD %	0.546	0.568	0.289	0.278	0.104	0.099		

Reference Material from Cetre d'Étude et de Controle des Analyses en Industrie Laitiére, France

Kjeldahl Method - Mean from the results of 5 laboratories: 0.5284 % N

FlashSmart data


N %	Average N %	RSD %	Protein %	Average Protein %	RSD %
0.5312			3.3891		
0.5286	*		3.3722		
0.5321			3.3948		
0.5339			3.4065		
0.5306	0.5298	0.5604	3.3854	3.3800	0.5605
0.5251	0.0296		3.3504 3.3504	3.3600	
0.5335			3.4035		
0.5264			3.3584		
0.5288			3.3735		
0.5276			3.3659		

OEA vs. Kjeldahl Method – Analytical Comparison

Sample	Flash	Smart	Kjeldahl	Method	
	N %	Protein %	N %	Protein %	
Soya	6.27	39.20	6.27	39.18	
Lentils	4.35	27.17	4.35	27.19	
Rice	1.13	7.08	1.12	7.00	
Wheat	1.75	10.91	1.74	10.89	
Beans	3.74	23.35	3.74	23.38	
UHT milk 1	0.53	3.38	0.53	3.37	
UHT milk 2	0.50	3.19	0.49	3.17	
Crude milk 1	0.57	3.65	0.57	3.66	
Crude milk 2	0.47	3.03	0.47	3.02	
Crude milk 3	0.41	2.65	0.42	2.66	
Pasteurized milk 1	0.50	3.21	0.50	3.19	
Pasteurized milk 2	0.46	2.96	0.47	2.99	
Milk powder 1	4.32	27.56	4.30	27.43	
Milk powder 2	4.18	26.64	4.19	26.73	
Milk powder 3	5.46	34.83	5.43	34.64	
Yoghurt	0.080	0.51	0.078	0.50	
Mascarpone cheese	0.635	4.05	0.638	4.07	
Grapes	0.52	3.25	0.51	3.19	
Bacon (low fat)	2.73	17.06	2.70	16.86	
Meat loaf	2.01	12.57	1.97	12.31	
Ham	2.56	16.00	2.54	15.87	
Biscuits 1	1.40	8.80	1.39	8.72	
Biscuits 2	1.36	8.51	1.34	8.37	
Flour	1.34	8.40	1.32	8.24	

Sample	N/P	rotein Single Rea	ctor	N/Pi	rotein Double Rea	actors
Sample	N %	Protein %	RSD %	N %	Protein %	RSD %
Layer Feed	2.72 2.72 2.70	17.02 16.98 16.84	0.56	2.73 2.72 2.70	17.06 17.02 16.88	0.56
Sheeps Food	2.94 2.96 2.96	18.36 18.51 18.35	0.49	2.99 2.97 2.97	18.66 18.59 18.56	0.28
Gluten Meal	11.21 11.22 11.22	70.07 70.11 70.13	0.04	11.29 11.25 11.27	70.57 70.32 70.47	0.18
Soybean Meal 1	7.73 7.75 7.74	48.31 48.42 48.36	0.11	7.71 7.70 7.72	48.20 48.10 48.25	0.16
Milk based powder	2.75 2.74 2.75	17.55 17.48 17.55	0.12	2.79 2.80 2.79	17.78 17.88 17.80	0.32
Milk based powder sucrose free	1.67 1.67 1.67	10.65 10.65 10.65	0.17	1.69 1.69 1.69	10.78 10.79 10.81	0.14
Milk based powder	2.50 2.50 2.49	15.95 15.95 15.89	0.32	2.50 2.50 2.51	15.97 15.96 16.00	0.13
Milk based powder sucrose free	2.35 2.34 2.32	14.99 14.93 14.80	0.64	2.34 2.33 2.34	14.90 14.89 14.92	0.11

Applications with MVC Module (CHN/O, CHNS/O, CHN/CHN, CHNS/CHNS, etc)

Sequence of analysis: 4 series / 5 days, each serie in duplicate. After each series on Left Reactor the Analyzer switch automatically to the Right Reactor via the MVC Module.

Table 3. CHNS average data on the left reactor.

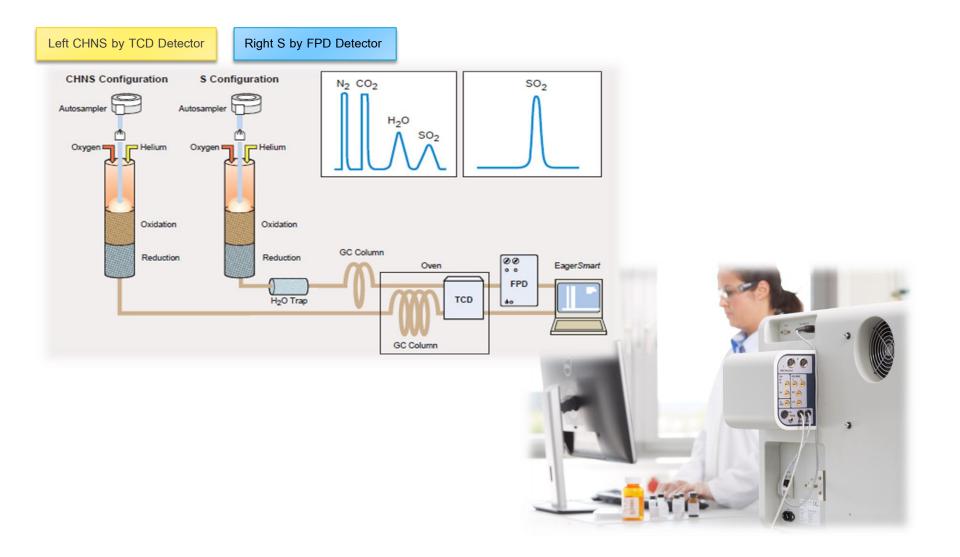
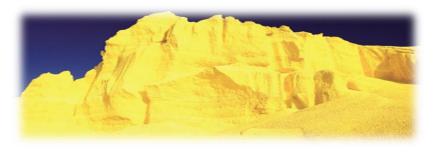

Day/ Month	Sample name	Runs	N %	RSD %	С %	RSD %	Н%	RSD %	S %	RSD %
14/04	Methionine	8	9.37	0.35	40.30	0.13	7.42	4.67	21.49	18.64
14/04	Sulfanilamide	8	16.21	0.53	41.72	0.31	4.67	0.55	18.68	0.58
15/04	Methionine	8	9.36	0.41	40.42	0.24	7.40	0.47	21.49	0.50
10/04	Sulfanilamide	8	16.27	0.31	41.85	0.21	4.68	0.56	18.70	0.33
40/04	Methionine	8	9.36	0.35	40.35	0.24	7.44	0.75	21.54	0.44
18/04	Sulfanilamide	8	16.27	0.45	41.85	0.19	4.69	0.59	18.70	0.26
19/04	Methionine	8	9.35	0.37	40.32	0.26	7.43	0.83	21.49	0.50
19/04	Sulfanilamide	8	16.28	0.40	41.76	0.13	4.65	0.13	18.64	0.39
20/04	Methionine	8	9.33	0.28	40.31	0.15	7.41	0.47	21.44	0.29
	Sulfanilamide	8	16.23	0.51	41.68	0.19	4.64	0.36	18.60	0.42

Table 4. CHNS average data on the right reactor.

Day/ Month	Sample name	Runs	N %	RSD %	С %	RSD %	Н%	RSD %	S %	RSD %
14/04	Methionine	8	9.39	0.25	40.32	0.18	7.42	4.66	21.48	18.59
14/04	Sulfanilamide	8	16.19	0.19	41.69	0.26	4.67	0.46	18.68	0.40
15/04	Methionine	8	9.35	0.33	40.28	0.28	7.43	0.65	21.48	0.21
10/04	Sulfanilamide	8	16.23	0.75	41.63	0.13	4.69	0.48	18.65	0.24
18/04	Methionine	8	9.41	0.22	40.29	0.23	7.46	0.61	21.40	1.04
18/04	Sulfanliamide	8	16.38	0.20	41.72	0.37	4.69	0.56	18.62	0.47
19/04	Methionine	8	9.40	0.64	40.20	0.43	7.38	1.07	21.53	0.41
19/04	Sulfanilamide	8	16.25	0.32	41.81	0.38	4.65	0.31	18.67	0.45
20/04	Methionine	8	9.39	0.55	40.36	0.28	7.43	0.68	21.53	0.58
20/04	Sulfanilamide	8	16.24	0.22	41.78	0.24	4.65	0.51	18.68	0.47


Accuracy, Precision, Repeatability, Stability

Pharma, University, Petrochemistry, Quality Control, Contract Labs

S%	RSD%	S ppm	RSD%
		5.1	
99.83		5.1	
99.98	0.09	5.3	1.73
99.99		5.1	
		5.2	

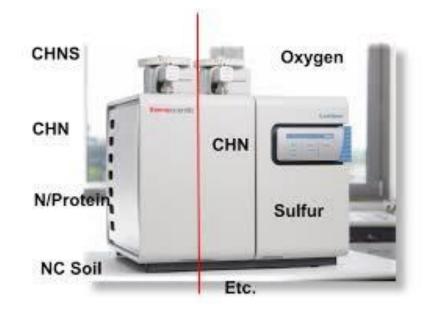
Sulfur Powder (Aldrich, 99.98 S%, ±0.30) Reference Liquid Solution (5 ppm S)

The Flash*Smart* EA can determine sulfur concentration in simultaneous CHNS and NCS mode, and also as sulfur measured on its own TCD Detector (100 ppm–100 S%). Additionally, with a simple upgrade, trace sulfur amounts can be measured when the Analyzer is coupled with a FPD Detector (5–500 ppm S).

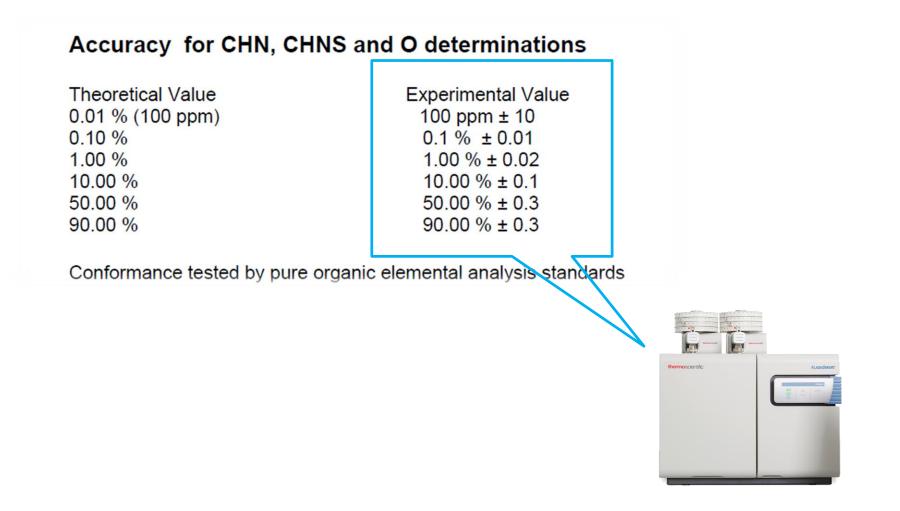
NC determination in Plants using Argon carrier gas

SAMPLE		ARGO	N AS CARR (3 RUNS)				
		%	SD	RSD (%)	%	SD	RSD %
	N	2.96	0.020	0.67	2.96	0.0165	0.57
ALFALFA	С	43.70	0.179	0.41	43.63	0.0563	0.13
ORCHARD LEAVES DRIED	N	2.24	0.001	0.45	2.29	0.0017	0.08
	С	50.28	0.287	0.56	50.29	0.0513	0.10

• Standard: 14 – 15 mg Atropine (4.84 %N), EDTA (9.59 %N) and Aspartic acid (10.52 %N)


• Calibration method: Linear Fit

• Sample weight: 15 – 16 mg



FlashSmart can easily change to over 20 configurations in one system, according to their needs and application fields.

- CHN
- CHNS
- NC org
- NCS
- NC soil
- N lube
- N org
- N protein
- Oxygen
- Sulfur

Summarize: All-In-One-Organic Elemental Analyzer

- Simplicity: Easy to Use and to Maintenance
- Modularity: over 20 Configurations, different auto-samplers and Detectors, MVC Module
- All type of sample matrix in every application fields
- Accuracy and Precision
- Repeatability and Reproducibility
- Complete conversion of all elements
- Productivity
- High Lifetime of gases and consumables

Thank you for your **OEA**ttention !!!

