

UHPLC-MS Basic Principles and Applications

Jitnapa Voranitikul

Product Specialist LC/MS

February, 2018

Fundamental of Liquid Chromatography

Sci Spec

Your Scientific Specialist

https://www.thermofisher.com/order/catalog/product/IQLAAAGABHFAPUMZZZ?SID=srch-srp-IQLAAAGABHFAPUMZZZ

Sci Spec

HPLC System Range

Sci Thermo Analytical L6 Systems

Vanquish[™] Max Pressure 1517 bar

Your Scientific Specialist

mo

Higher resolution – narrower peaks Higher sensitivity – taller peaks Higher peak capacity (more peaks / unit time) – narrower peaks

Increase Speed, Maintain Resolution 200x2.1mm Jec Speeding up analysis with 1.9 mm Hypersil GOLD 600µl/min 655 bar 1.9**m** 400µl/min 190 bar 3**m**M Speed 250µl/min 102 bar 5**m**M 150µl/min 68 bar 8**m** 100µl/min 56bar 12**m**M 10 12 0 2 18 4 6 8 14 16 Time (min)

The UltiMate[™] 3000 LC Systems

Sci Fundamental of Mass Spectrometry Your Scientific Specialist

https://www.thermofisher.com/order/catalog/product/TSQ02-10001?SID=srch-srp-TSQ02-10001

"The basis in mass spectrometry (MS) is the production of ions, that are subsequently separated or filtered according to their mass-to-charge (m/z) ratio, and detected. The resulting mass spectrum is a plot of the (relative) abundance of the produced ions as a function of the m/z ratio."

Niessen, W. M. A.; Van der Greef, J., *Liquid Chromatography–Mass Spectrometry: Principles and Applications*, 1992, Marcel Dekker, Inc., New York, p. 29.

Information Rich Data

• Pharmaceutical analysis

- Bioavailability studies
- Drug metabolism studies, pharmacokinetics
- Characterization of potential drugs
- Drug degradation product analysis
- Screening of drug candidates
- Identifying drug targets

- Biomolecule
 characterization
 - Proteins and peptides
 - Oligonucleotides
- Environmental analysis
 - Pesticides on foods
 - Soil and groundwater contamination
- Forensic analysis/clinical

• Operate at very low pressure (10⁻⁵ to 10⁻⁷ torr)

(Atmosphere = 760 torr)

- Mass spectrometer work with IONS
- •Measure gas-phase ions
- Determine the mass are separated according to their mass-to-charge (m/z) ratio

Your Scientific Specialist

IONIZATION TECHNIQUES

• ION SOURCE

Spec

- Electron impact (EI)
- Chemical Ionization (CI)
- Atmospheric Pressure Ionization (API)
 - •Electrospray Ionization (ESI)
 - •Atmospheric Pressure Chemical Ionization (APCI)
 - •Atmospheric Pressure Photo-Ionization (APPI)
- Matrix Assisted Laser Desorption/Ionization (MALDI)

Three Fundamental Processes:

- 1. Production of charged droplets.
- 2. Droplet size reduction, and fission.
- 3. Gas phase ion formation.

Ion Evaporation Theory

ESI - Ion Max Source

Electrospray Ionization

Atmospheric Pressure Chemical ionization

Chemistry Considerations ESI or APCI

ESI:

- lons formed by solution chemistry
- Good for thermally labile analytes
- Good for polar analytes
- Good for large molecules (Proteins / Peptides)

APCI:

- lons formed by gas phase chemistry
- Good for volatile / thermally stable
- Good for non-polar analytes
- Good for small molecules (Steroids)

Ion Max Source Design - APCI Probe

- It depends on the exact application.
- Increasing polarity and molecular weight and thermal instability favors electrospray.
 - Most drugs of abuse are highly polar and are easily analyzed using electrospray.
 - High molecular weight proteins also require electrospray
- Lower polarity and molecular weight favors APCI or APPI.
 - Lower background, but compounds must be more thermally stable.

Typical Mass Accuracy and Resolution

Sci Spec

Type of MS	Mass accuracy	Resolution	Utility for
Quadrupole	0.1 amu	6,000	Identify
Traps	0.1 amu	8,000	Identify
TOF	0.0001 amu	<20,000 TOF	Empirical formula/
		60,000 Q-TOF	composition
Sector	0.0001 amu	10,000	Empirical formula/
			composition
Orbitrap	0.0001 amu	1,000,000	Empirical formula/
			composition

---- MASS ANALYSER

QUADRUPLE

Sci Spec

Sci TSQ Triple Quadrupole (available on YouTube)

http://www.youtube.com/watch?v=LFB14D8pkoc

Scan Mode	Q1	Q2	Q3	Purpose
Full Scan	Scanning	Pass All	Pass All	MW Info.
SIM	Fixed m/z	Pass All	Pass All	Quantitation
Product	Fixed m/z	Pass All (+ CE)	Scanning	Structural Info.
SRM	Fixed m/z	Pass All (+ CE)	Fixed m/z	Targeted Quantitation
Neutral Loss	Scanning	Pass All (+ CE)	Scanning	Analyte Screening
Precursor	Scanning	Pass All (+ CE)	Fixed m/z	Analyte Screening

Full Scan Mode

Full Scan (Q1 or Q3)

Full Scan Mode

Purpose: Survey scan of a chromatographic peak

Q1 RF Only RF Only Q3 Scanning

Full Scan Q3:

Selected Ion Monitoring = SIM

SIM Mode

Purpose: Quantitation on a specific m/z range of ions

Selected Ion Monitoring = SIM

SIM is in essence a full scan acquisition on a relatively narrow mass window (defined as center mass / scan width)

- -- Advantages
 - □ Targeted analyte monitoring
 - ◻ High duty cycle

- Disadvantages
 - \propto Can suffer from interferences
 - lpha Not as sensitive or selective as SRM

Selected Reaction Monitoring (SRM)

- -- Advantages
 - □ Targeted analyte monitoring
 - ◻ High duty cycle
 - Simultaneous" monitoring of multiple transitions

- Disadvantages

The Need for True MS/MS

SRM Selectivity in Complex Matrices

RT: 2.28 - 5.89 SM: 15G

Sci Spec

HIGH RESOLUTION MASS ANALYSER

Spec

Nominal Mass

The mass of an ion with a given empirical formula calculated using the integer mass numbers of the most abundant isotope of each element

Ex: M=249 $C_{20}H_{9}^{+}$ <u>or</u> $C_{19}H_{7}N^{+}$ <u>or</u> $C_{13}H_{19}N_{3}O_{2}^{+}$

• Exact Mass

Ех

The mass of an ion with a given empirical formula calculated using the exact mass of the most abundant isotope of each element

: M=249	$C_{20}H_{9}+$	249.0070
	$C_{19}H_7N+$	249.0580
	$C_{13}H_{19}N_3O_2+$	249.1479

Sci Spec

Sci Spec

Mass Resolution: What is it?

- Ability of a mass spectrometer to distinguish between ions of nearly equal m/z ratios (isobars).
 - m measured mass
 - ▲m peak width measured at 50% peak intensity (Full Width Half Maximum)
 - or the mass difference
 between two adjacent peaks
 of equal intensity, in this case
 pw @ 10% valley definition is
 used.

Resolution & Peak Width

- At minimum the resolution of the mass analyzer should be sufficient to separate two ions differing by one mass unit anywhere in the mass range scanned (unit mass resolution).
- Typical values of resolution for <u>low resolution mass analyzers</u> (e.g. quadrupoles and ion traps) are below 5000.
- <u>High resolution instruments</u> have a resolution exceeding 15000.

Sci Commercial High Resolution MS Technology Race

Mass resolution (FWHM)

Anal. Chem. 2000, 72, 1156-1162

Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis

Alexander Makarov*

HD Technologies Ltd., Atlas House, Simonsway, Manchester, M22 5PP, U.K.

Major accurate-mass analyzers for Life Science Sci Spec FT ICR TOF MS **Orbitrap MS** Excitation by injection Motion in preions are trapped Motion in electro- Detection by dominantly magnetic Image current detection

- field
- Low energy injection

 $T \propto m/z$

- MSⁿ possibilities
- Broad-band excitation

- Fourier transform and
- data processing
- Significant kinetic energy during detection
- Very long mean free path (many km)

- static fields (m/zindependent well)
- High energy injection
- High energy spread upon fragmentation
- secondary electron multiplier
- Very high kinetic energy for detection (many kV)
- Significant mean free path (tens of m)

 $TOF \propto \sqrt{m/z}$

 $T \propto \sqrt{m/z}$

Orbitrap Mass Analyzer: Principle of Operation

Makarov A. Anal. Chem. 2000, 72, 1156-1162.

Many Ions Generate a Complex "Transient"

UHPLC with Q Exactive Mass Spectrometer

http://planetorbitrap.com/

ThermoFisher SCIENTIFIC

Applications of Triple Quadrupole LC-MS/MS

thermoscientific

Robustness, reproducibility, reliability with best-in-class sensitivity: Increased confidence in targeted quantitation of pesticides in food matrices

Quantitation of more than 250 Pesticides below MRLs in Leek

LC: Vanquish Flex Binary System

Column: Accucore aQ (2.1 × 100 mm, 2.6 µm)

Column Temperature: 25°C

Injection Volume: 1 µL

Mobile Phase: A) 98% water with 2% methanol; B) 98% methanol with 2% water— Both containing 0.1% formic acid and 5 mM ammonium formate

Your Scientific Specialist

Flow Rate: 300 µL/min

Run Time: 15 min

- Maximize UHPLC separation with 1034 bar (15,000 psi) pump pressure limit
- Viper-based, tool-free fluidic connections
- Biocompatible, Iron-free flow path
- Sample pre-compression for better injection reproducibility and longer column lifetimes
- Standard Autosamper capacity: 4 racks (216 vials)
- New column thermostatting technology
- Removable doors for easy access

TSQ Quantis Parameter

lonization mode	Heated Electrospray (HESI)
Scan type	timed-SRM
Polarity	Positive/Negative switching
Spray Voltage for Positive mode	3700 V
Spray Voltage for Negative mode	2500 V
Sheath gas pressure	30 arbitrary units (Arb)
Aux gas pressure	6 Arb
Sweep gas pressure	1 Arb
lon transfer tube temperature	325 °C
Vaporizer temperature	350 °C
CID gas pressure	2 mTorr
Cycle time	0.5 s
Q1 resolution (FWHM)	0.7
Q3 resolution (FWHM)	0.7

Chromatogram of more than 250 pesticides

LC-MS/MS chromatogram of more than 250 pesticides in leek extract at 100 μ g/kg.

Azoxystrobin elutes at 8.69 min

TSQ Quantis MS *VS* TSQ Endura MS

Differences in performance are shown in peak area and peak height.

Sci Reliable Performance when Starting from Standby mode

- Red lines represent -20% of Atrazine response at 10 μ g/kg.
- Yellow lines show the exact moment the system was placed in standby mode for 12 h (no maintenance was performed).
- The data shows that the response was within the expected —20% range for at least 400 injections of 10 ppb QC in leek.

- rapid and robust quantitation of more than 250 pesticides in leek at or below their respective MRLs.
- selectivity and sensitivity enabled analysis of only 1 μL sample
- without need for dispersive SPE sample cleanup or sample dilution.

Thank You for Your Attention

Get Connected www.scispec.co.th/

Follow Us

@scispec

f

https://www.facebook.com/scispec/

