

ORBITRAP Mass Spectrometer

An Ultimate Qual and Quan Machine

Pongsagon Pothavorn Scispec Co., Ltd.

Information Rich Data

Accurate Mass in Life Science

Sci Spec LC-MS solutions for all analytical challenges

• Best LC-MS Portfolio

INVESTMENT

Induced by ion packets moving inside the trap

- Ions trapped in an electrostatic field
- Central electrode kept on high voltage
- Outer electrode is split and able to pick up an image current induced by ion packets moving inside the trap

$$U(r,z) = \frac{k}{2} \left\{ z^2 - r^2 / 2 + R_m^2 \operatorname{An}(r/R_m) \right\}$$

Ion Injection and Formation of Ion Rings

- An ion packet of a selected *m/z* enters the field
- Increasing voltage squeezes ions
- Voltage stabilises and ion trajectories are also stabilized
- Angular spreading forms a ROTATING RING

Fourier Transform-based

- The moving ion rings induce an image current on outer electrodes
- The frequency of harmonic oscillations is proportional to ions' *m/z*

Orbitrap and Nuclear Magnetic Resonance (NMR)

• Free Induction Decay (FID)

Time Domain ->Fourier Transform -> Spectrum (Frequency Domain)

Rapid and sensitive screening methods able to assign positive hits undoubtedly to particular organic compounds

Type of MS	Mass accuracy	Utility for
Quadrupole	0.1 µ	Identify
Traps	0.1 μ	Identify
TOF	0.0001 µ	Empirical formula/ composition
Sector	0.0001 µ	Empirical formula/ composition
FT-MS	0.0001 µ	Empirical formula/ composition

Isobaric Pesticides

Thiamethoxam: $[M+H]^+ = C_8H_{11}CIN_5O_3S$ (292.02656)

Parathion: $[M+H]^+ = C_{10}H_{15}NO_5PS$ (292.04031)

Isobaric Pesticides 3:1 Mix

Resolution – Why Is It Important?

- Enables accurate mass
- Increases confidence of identification
- Improves quantitative accuracy
- Gives access to qualitatively different information

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/															
57 ² La ¹⁸ Lanthanum 138.90547	58 Ce Cerium 140.116	2 8 18 19 9 2	59 2 Pr 2 18 18 18 21 2 140.90765	60 2 Nd 22 Neodymium 2 144.242	61 28 Pm 23 Promethium (145)	62 24 Sm 24 Samarium 150.38	63 28 Europium 22 151.984	64 28 Gd 25 Gadolinium 2 157.25	65 2 Tb 28 18 18 27 8 2 158.92535	66 2 Dy 2 182.500	67 2 Ho 184.93032	68 2 Er 30 Erbium 2 167.259	69 28 Tm 31 Thulium 2 168.93421	70 2 Yb 18 Ytterbium 173.054	71 2 Lu 18 Lutetium 2 174.9868
89 ² Ac ¹⁵ Actinium ⁹ (227) ²	90 Th Thorium 232.038	2 8 18 32 18 10 2 06	91 28 Pa 22 Protactinium 2 231.03588	92 ² U ¹⁸ Uranium ⁹ 238.02891	93 28 Np 32 Neptunium 9 (237)	94 28 Pu 32 Plutonium 28 (244)	95 ² Am ¹⁸ Americium ⁸ (243)	96 28 Cm 18 Curium 25 (247) 2	97 28 Bk 322 Berkelium 8 (247)	98 28 Cf 322 Californium 8 (251)	99 2 ES 29 Einsteinium 2 (252)	100 28 Fm 322 527) 28	101 ² Md ¹⁸ Mendelevium ⁸ (258)	102 ² No ¹⁸ Nobelium ⁸ (259) ²	103 ² Lr ¹⁸ Lawrencium ⁹ (282)

How's About Mass Accuracy

- Average Mass = summing the <u>average atomic masses</u> of the constituent elements, H_2O ; 1.00794 + 1.00794 + 15.9994 = 18.01528.
- Exact Mass = summing the masses of the individual isotopes of the molecule, H2O; 1.0078 + 1.0078 + 15.9994 = 18.0106.

The Others Stories;

- Isotopomer (Isotopic Isomer) = same type of isotope but difference in position, CH₃CHDCH_{3 vs} CH₃CH₂CH₂D
- Isotopologues = difference in isotope in the molecules, H_2OHOD
- Monoisotopic = sum of masses in molecule. Using of most abundance or stable isotope.

Mass Accuracy – What for?

0 10 0000	H = 1.0078	0 = 15.9949
C = 12.0000	N = 14.0031	S = 31.9721

Mass measured	Tolerance [Da]	Suggestions	Calc Mass
32.0	+/- 0.2	O ₂	31.9898
		CH ₃ OH	32.0261
		N_2H_4	32.0374
		S	31.9721
32.02	+/- 0.02	CH₃OH	32.0261
		N_2H_4	32.0374
32.0257	+/- 0.002	CH ₃ OH	32.0261

Determine Fine Isotopic Pattern

Mass Accuracy across the Elution Profile

- 21 scans per elution peak
- External calibration

Sci Spec

pg on column	Standards	Apple juice	Baby food	Yogurt	Formula
A + 1					
Q-Exactive, Overall:	1.69 ± 2.30				
10	1.95 ± 2.26	3.17 ± 3.27	3.67 ± 3.33	3.21 ± 2.83	2.18 ± 1.69
100	2.61 ± 4.81	1.95 ± 1.98	1.91 ± 2.19	1.95 ± 1.87	2.10 ± 2.08
500	0.86 ± 0.96	1.07 ± 1.05	1.07 ± 1.18	1.26 ± 1.47	1.18 ± 1.36
2000	1.02 ± 1.79	0.75 ± 0.96	0.89 ± 1.34	0.74 ± 0.97	0.66 ± 0.89
MaXis, Overall: 5.01	± 7.53				
10	9.20 ± 7.07	13.47 ± 9.06	15.30 ± 11.03	11.78 ± 7.62	11.49 ± 9.44
100	4.85 ± 6.66	7.78 ± 13.99	6.79 ± 7.02	6.94 ± 7.91	5.99 ± 6.25
500	3.05 ± 6.45	5.22 ± 9.58	3.30 ± 3.85	3.23 ± 3.79	3.33 ± 4.34
2000	1.77 ± 2.36	2.79 ± 6.28	2.13 ± 3.13	1.88 ± 2.56	2.03 ± 2.62
A + 2					
Q-Exactive, Overall:	1.59 ± 4.33				
10	5.31 ± 18.09	3.36 ± 5.42	4.38 ± 9.08	5.15 ± 6.56	6.44 ± 5.03
100	1.75 ± 3.01	1.93 ± 2.91	2.24 ± 4.60	1.70 ± 2.37	1.57 ± 1.86
500	1.03 ± 1.26	0.91 ± 0.62	0.86 ± 0.59	1.05 ± 0.81	1.22 ± 1.94
2000	0.81 ± 1.05	0.86 ± 1.20	0.73 ± 0.56	0.82 ± 0.57	0.74 ± 0.53
MaXis, Overall: 3.67	1 ± 6.47				
10	10.96 ± 9.71	12.89 ± 6.70	19.43 ± 38.22	11.21 ± 5.68	14.92 ± 7.62
100	3.55 ± 4.75	6.09 ± 6.85	6.73 ± 7.02	4.67 ± 4.46	5.22 ± 5.24
500	2.13 ± 3.14	4.02 ± 7.02	3.02 ± 3.17	3.01 ± 4.27	2.78 ± 3.38
2000	1.24 ± 2.06	2.23 ± 4.56	1.69 ± 2.36	1.68 ± 2.57	1.94 ± 3.21

Mass Accuracy

Spec

Rosolving Power and Mass Accuracy

Long-term mass accuracy with external calibration

- Easy method development for multi-residue analysis especially in complex matrices
- Easy troubleshooting with detection of all adducts, degradation and contaminants
- Higher detection specification
- Simultaneous Qual and Quan analysis

	Orbitrap	QQQ	Q-TOF
Sensitivity			
Resolution			
Identification			
Unknowns			
Selectivity			
Quantitation			
Retrospective data mining			
Ease of troubleshooting			
Cost			

- High isolation power for higher discrimination
- High precision for accurate mass identification
- High resolution for more identification
- High mass stability for a long lasting mass calibration
- MSⁿ
- Library availability for easy interpretations

Orbitrap Analyzer - the 'Heart' of a Mass Spectrometer

Standard Orbitrap

High-field Orbitrap

Resolution VS m/z

Peptide ID Distribution of Precursors from LC/MS of E. Coli digest

Parent Ion m/z

- 85% of the peptide parent ions (precursors) are below *m/z* 800
- Most of the chemical interferences are below *m*/*z* 600
- The highest resolution is needed below m/z 800 where Orbitrap technology has it and TOF technology doesn't!

Labelling Techniques

- Isobaric labeling techniques (iTRAQ, TMT) need high resolution at low masses
- Chemical interferences are common when using <u>collision cells</u>!

Intact Protein Analysis

- Complete charge state envelope of IgG 'Humira'
- Major glycosylation forms are baseline separated

• Relative intensity reproducibility within a few percent

	Relative abundances						
Q Exactive	G0+G0F	G0F+G0F	G0F+G1F	G0F+G2F	G1F+G2F		
1	12.9	74.1	100.0	67.0	23.4		
1	12.3	76.0	100.0	71.4	29.8		
1	12.0	72.8	100.0	66.2	22.0		
1	12.2	75.0	100.0	67.0	23.6		
2	12.7	75.7	100.0	63.6	21.6		
2	13.2	75.4	100.0	64.8	21.0		
2	12.9	76.6	100.0	64.7	21.6		

Intact Protein Analysis

- Mass measurement accuracy
- Average error for 34 measurements 6.9 ppm
- Standard deviation 6.4 ppm

	ppm mass measurement errors						
Q Exactive	G0+G0F	G0F+G0F	G0F+G1F	G0F+G2F	G1F+G2F		
1	-10.5	0.7	-10.5	-13.8	-18.0		
1	-3.2	-4.3	-6.9	3.2	N/A		
1	-11.6	-1.1	-8.8	-11.2	-12.0		
1	5.1	-5.0	-2.6	5.1	5.6		
2	-14.3	3.0	-6.9	-5.4	-5.9		
2	-8.6	-2.2	-12.2	-12.5	-12.9		
2	-14.3	-6.6	-12.3	-14.8	-10.1		

Confirmation of protein primary structure

Sequence Confirmation of mAB

- ETD fragmentation of an intact IgG 'Humira'
- Resolution settings 240,000 for fragment detection
- Increased sequence coverage
- Localization of modifications (deamidation)

- Signal visibility is dependent, whether a signal is visible above the spectrum noise
- Spectrum noise is dependent on the ratio of compound within a certain ion population

Full Scan Spectrum of Atenolol

AZ_1000ng_ml_100k_1e6_HypersilGoldPFP #246 RT: 3.46 AV: 1 SB: 1 3.25 NL: 1.36E6 T: FTMS + p ESI Full ms [140.00-1800.00]

Full Scan Spectrum of Pyridoxine

AZ_1000ng_ml_100k_1e6_HypersilGoldPFP #92 RT: 1.27 AV: 1 SB: 1 1.04 NL: 1.86E6 T: FTMS + p ESI Full ms [140.00-1800.00]

Alprazolam Y = 6366.31+514.015*X R^2 = 0.9967 W: 1/X

spec

- High isolation power for higher discrimination
- High precision for accurate mass identification
- High resolution for more identification
- High mass stability for a long lasting mass calibration
- MSⁿ
- Library availability for easy interpretations

Analysis of Protein Complexes

- Extending the mass range
- Protein assemblies up to 1 million Da

E. coli GroEl 801 kDa

Spec

Ligand Binding Stoichiometry

Data Dependent Decision Tree

• Decision tree-driven tandem mass spectrometry for shotgun proteomics

Product Dependent Trigger

• ZIC HILIC separation of a glycoprotein digest

Product Dependent Trigger

- HCD fragmentation spectrum of *m/z* 645.6194
- Oxonium ions observed among top 20 peaks

Extended Top-down Capability

Product Dependent Trigger: HCD PD ETD

- ETD fragmentation triggered
 - Peptide sequence information
 - Glycosylation site localization

The orbitrap provides reproducible high resolution accurate mass with superior U-HPLC compatibility at resolution unattainable by QTOFs without compromising the sensitivity and dynamic range in MS or MS-MS data. With orbitrap, you will have fewer false positives, higher quality, better accuracy and more confidence in your quan/qual measurements.

nriOl

From Discovery to Quantification - do it all with a Q Exactive

Linearity and Precision

Milk Samples	Non Fat			Low Fat (2%)				Whole Fat				
Fortification Levels	50	100	250	500	50	100	250	500	50	100	250	500
Sulphamethazine	0.9964				0.9908			0.9970				
(RSD %)	2.4	7.2	4.9	2.4	6.6	14.5	5.2	5.6	8.9	1.2	5.1	n/a
Oxytetracycline	0.9906			0.9931			0.9909					
(RSD %)	2.7	11.4	11.4	5.5	11.6	11.8	5.9	4.2	9.2	12.9	4.9	2.6
Tetracycline	0.9923			0.9948			0.9903					
(RSD %)	6.2	6.4	5.4	3.7	7.3	4.8	5.9	4.5	4.1	9.5	6.5	5.5
Enrofloxacin	0.9969			0.9969				0.9973				
(RSD %)	9.2	7.9	2.3	0.8	11.1	1.4	1.4	3.1	6.9	8.3	3.0	n/a
Difloxacin	0.9958			0.9907			0.9968					
(RSD %)	12.2	4.3	6.0	2.4	10.8	4.6	2.7	5.5	2.6	6.1	5.1	n/a
Spiramycin	0.9920			0.9740			0.9951					
(RSD %)	11.1	11.8	8.4	4.1	10.9	4.0	10.0	9.4	13.3	6.5	5.2	0.2
Albendazole	0.9984			0.9967			0.9928					
(RSD %)	1.6	1.7	1.7	2.7	6.3	3.2	3.6	4.2	2.6	6.2	1.2	2.9
Phenylbutazone	0.9947				0.9922				0.9663			
(RSD %)	2.9	3.3	0.8	2.6	8.1	4.1	4.9	3.1	0.6	0.9	0.7	0.3
Salinomycine Na	0.9993			0.9966			0.9984					
(RSD %)	1.2	0.7	1.2	1.5	1.5	0.8	3.1	0.4	2.8	3.1	1.3	1.2

Stolker, A.A.M. et al; Anal. and Bioanal. Chem. 2010 accepted for publication

Drug identification using ToxIDTM2.1.0

- Fully automated analysis and reporting
- Drug identification based on
- Molecular weight
- MS2 spectra
- Chromatographic retention time
- Built-in library of about 300 drugs
- Library spectra acquired under real world condition for robust and accurate ID
- The software uses proven NIST search engine
- Feature to easily create and expand library
- Excellent results review and reporting
- Summary report
- Data review report
- Excel spreadsheet

ToxID Summary Report

Your Company Summary Report

Raw File Name: C./Documents and Settings/benedicte durets/Mes documents/My Data/ClinicalToxicologyForensic/Toxicology Config File Name: C/Documents and Settings/benedicte.duretz/Mes documents/My Data/ClinicalToxicology/Forensie/Toxicology Sample Name: Laboratory: Acquistion Start Time: 21/11/2008 11:43:54

2000

Peak Number	Compound Name	Code	SI	RSI	m/z	Expected RT	Actual RT	Concentration ng/ml	Library Name
1	Furosemide	р	999	999	329.00	8.70	9.40	0.03	Tox_Library_LXQ
2	Meprobamate	р	814	814	219.10	7.20	7.48	259.21	Tox_Library_LXQ
3	Venlafaxine	p	831	835	278.20	9.40	10.27	1.79	Tox_Library_LXQ
4	Diazepam	p	842	843	285.10	10.40	10.76	1.46	Tox_Library_LXQ
5	Chlorpromazine-D3	i	814	814	322.20	17.30	17.49	0.12	Tox_Library_LXQ
6	Prazepam-D5	i	911	916	330.20	11.70	12.59	1.69	Tox_Library_LXQ
7	Haloperidol-D4	i	806	826	380.40	14.90	15.30	1.00	Tox_Library_LXQ
	100 80 40 20 20 2.43 0 100 80 60 40 20	2.78 7.46 7.47 7.4	9.05 .94 .9.34 	12.81 <u>13</u>	18.23 71 17.83	20.47	23.85 27.84 23.54 25.34 25.34 25.34	30,23 29,98 28,95 30,23 29,98 28,95 30,23 28,95 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	2 55E5 2 F: ITMS ESI Full 5 5: 00- 3:00] 2 14E7 2 F: ITMS 2 ESI Full 5 9: 00- 00.00]
	20 2.44	5.42 6.15	9.65 10.76	14.	36 18.22	18.97 22.32	J hm 28	30 ~~~	
		5	10		15 Time (min)	20	25	30	

ToxID Review Report

What is Mass Frontier?

- Software for small molecule structural elucidation via mass spectral interpretation
 - Predict fragmentation given a compound structure
 - Annotate spectra with fragment structures
 - Store MSⁿ spectra along with structures, peak annotations, ID numbers, pathway information, etc
 - Match unknown spectra against library entries
 - And MUCH more...

Tag Line:

Mass Frontier helps you to go from SPECTRA

Who should get Mass Frontier?

- Anyone who is doing small molecule structural elucidation / confirmation via mass spectrometry
- Examples:
 - Metabolite Identification in Drug Metabolism
 - Impurity and Degrading analysis in QC/QA
 - Endogenous Metabolite Identification in Metabolomics
 - Forensic Analyses in Federal and State Agencies
 - Doping Control in Horse Racing
 - Chemistry/Biochemistry/Pharmacy Departments in Universities doing small molecule research
 - Service labs for synthetic chemists

General Unknown Screening using Mass Frontier

Sheldon et al. Determination of Ion Structures in Structurally Related Compounds Using Precursor Ion Fingerprinting. JASMS, **2009**, 20, 370-376

Spec

Accurate mass information is powerful – provides a potential formula

However MSⁿ information still necessary to distinguish between structural isomers

Trees can automatically be generated by Data Dependant LC-MS/MS runs on our instruments

Component Detection from Mass Frontier can automatically deconvolute MSⁿ spectral trees!

This information collectively, <u>uniquely</u> defines the structure of the molecule

How Do You Get a Structure From MS Data?

Mass Frontier: Toolbox for Structural Elucidation

1. General fragmentation rules

2. Mass Frontier Fragmentation Library™

Total number of	Mass Frontier 6.0			
Fragmentation Schemes	30.936			
Individual Reactions	129.229			
Chemical Structures	151.762			
Decoded Mechanisms	120.029			

3. User Libraries

Fragmentation Library[™] in 6.0 now covers >99% published literature

	Source	Volume	Year
1.	JASMS (Journal of the American Society for Mass Spectrometry)	1-17	1990-2006
2.	IJMSIP (International Journal of Mass Spectrometry and Ion Physics)	1-53	1968-1983
	IJMSIP (International Journal of Mass Spectrometry and Ion Processes)	54-175	1983-1998
	IJMS (International Journal of Mass Spectrometry)	176-255	1998-2006
3.	RCM (Rapid Communications in Mass Spectrometry)	1-20	1987-2006
4.	JMS (Journal of Mass Spectrometry)	30-41	1995-2006
5.	OMS (Organic Mass Spectrometry)	1-29	1968-1994
6.	JMSSJ (Journal of the Mass Spectrometry Society of Japan)	11-27 29-30 37-48 50-53	1964-1979 1981-1982 1989-2000 2002-2005
7.	MSR (Mass Spectrometry Reviews)	1-25	1981-2006
8.	EJMSBMER (European Journal of Mass Spectrometry in Biochemical, Medicine, and Environmental. Research)	1-2	1980-1982
9.	BMS (Biomedical Mass Spectrometry) BEMS (Biomedical and Environmental Mass Spectrometry)	1-12 14-19	1974-1985 1987-1990
	BMS (Biological Mass Spectrometry)	20-23	1991-1994
10.	JC (Journal of Chromatography)	181-536	1980-1991
11.	EJMS (European Journal of Mass Spectrometry)	4	1998

Predictive Fragmentation

How Do I Annotate Spectral Trees? ... Automatically

- All records of installed libraries are shown in Database Manager
- All records are accessible without querying
- Spectral and Fragmentation libraries are unified in Database Manager
- Searches are universal, independent of data type (structures, m/z values, names, CAS number, biological activity, etc)

One Record: Spectral tree with corresponding fragmentation mechanisms & more!

HighChem Spectral Tree Libraries—Free with the software!

Library: HighChem ESI Neg 2008 Tree Count: 524 Spectra Count: 3805 Fragmentation Schemes: 263

Library: HighChem ESI Pos 2008 Tree Count: 1251 Spectra Count: 10180 Fragmentation Schemes: 702

Common pharmaceutical compounds and human metabolites

Peaks manually annotated and fragmentation mechanism elucidated

Compound Discoverer

Sci Spec

Flexible Workflow

 Use common, predefined workflows or create your own

Integrate your own nodes

 New in version 2.0: Nodes for Unknown Detection, Identification, Statistics

-Ð Differential Descriptive -010-17 ------Analysis -010-Statistics

24

Identifying Unknown

Predicted Composition

Conclusion

- The Orbitrap Mass Analyzer is a new type of mass analyzers with its own unique combination of analytical parameters
- Orbitraps are still evolving...
 - Higher speed
 - Higher resolving power and mass accuracy
 - Higher sensitivity
 - More routine applications
- Exciting new applications continue to emerge

- High resolution is a key characteristics of MS data enabling
 - Mass accuracy
 - Confident identification
 - Reliable quantitation
- Data dependent acquisition offers an elegant simplicity and has proven highly useful for discovery-driven proteomics
- Mass spectrometry technology enables comprehensive analysis of proteomics samples
 - Multiple fragmentation techniques
 - MSⁿ capability
- **Quan&Qual** experiments done on a single platform

